
Antenna Toolbox™
Reference

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Antenna Toolbox™ Reference
© COPYRIGHT 2015–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)
March 2016 Online only Revised for Version 2.0 (R2016a)
September 2016 Online only Revised for Version 2.1 (R2016b)
March 2017 Online only Revised for Version 2.2 (R2017a)
September 2017 Online only Revised for Version 3.0 (R2017b)
March 2018 Online only Revised for Version 3.1 (R2018a)
September 2018 Online only Revised for Version 3.2 (R2018b)
March 2019 Online only Revised for Version 4.0 (R2019a)
September 2019 Online only Revised for Version 4.1 (R2019b)
March 2020 Online only Revised for Version 4.2 (R2020a)
September 2020 Online only Revised for Version 4.3 (R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Classes
1

Objects
2

Apps
3

Array Objects
4

Methods
5

Properties
6

RF Propagation Objects and Methods
7

iii

Contents

Classes

1

polarpattern class
Interactive plot of radiation patterns in polar format

Description

polarpattern class plots antenna or array radiation patterns in interactive polar format. You can
also plot other types of polar data. Use these plots when interactive data visualization or
measurement is required. Right-click the Polar Measurement window to change the properties,
zoom in, or add more data to the plot.

Construction
polarpattern plots antenna or array radiation patterns and other types of data in polar format.
polarpattern plots field value data of radiation patterns for visualization and measurement. Right-
click the polar plot to interact.

polarpattern(data) creates a polar plot with magnitude values in the vector d. In this polar plot,
angles are uniformly spaced on the unit circle, starting at 0 degrees.

polarpattern(angle,magnitude) creates a polar plot from a set of angle vectors and
corresponding magnitudes. You can also create polar plots from multiple sets for angle vectors and
corresponding sets of magnitude using the syntax: polarpattern(angle1, magnitude1,
angle2, magnitude2...).

1 Classes

1-2

p = polarpattern(___) returns an object handle that you can use to customize the plot or add
measurements. You can specify any of the arguments from the previous syntaxes.

p = polarpattern('gco') returns an object handle from polar pattern in the current figure.

polarpattern(___ ,Name,Value) creates a polar plot, with additional properties specified by one
or more name-value pair arguments. Name is the property name and Value is the corresponding
property value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values. To list all the
property Name,Value pairs, use details(p). To list all the property Name,Value pairs, use
details(p). You can use the properties to extract any data from the radiation pattern from the
polar plot. For example, p = polarpattern(data,'Peaks',3) identifies and displays the three
highest peaks in the pattern data.

For a list of properties, see PolarPattern.

polarpattern(ax, ___) creates a polar plot using axes handle, ax instead of the current axes
handle.

Input Arguments
data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates (x, y) of each point. x
contains the real (data) and y contains the imaginary (data).

When data is in a logarithmic form, such as dB, magnitude values can be negative. In this
case,polarpattern plots the smallest magnitude values at the origin of the polar plot and largest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

 polarpattern class

1-3

Methods
add Add data to existing polar plot
addCursor Add cursor to polar plot angle
animate Replace existing data with new data for

animation
createLabels Create legend labels
findLobes Main, back and side lobe data
replace Replace existing data with new data in polar plot
showPeaksTable Show or hide peak marker table
showSpan Show or hide angle span between two markers

Examples

Polar Pattern for Vivaldi Antenna

Create a default Vivaldi antenna and calculate the directivity at 1.5 GHz.

v = vivaldi;
V = pattern(v,1.5e9,0,0:1:360);

Plot the polar pattern of the calculated directivity.

P = polarpattern(V);

1 Classes

1-4

Polar Pattern of Cavity Antenna

Create a default cavity antenna. Calculate the directivity of the antenna and write the data to
cavity.pln using the msiwrite function.

c = cavity;
msiwrite(c,2.8e9,'cavity','Name','Cavity Antenna Specifications');

Read the cavity specification file into Horizontal, Vertical, and Optional structures using the
msiread function.

[Horizontal,Vertical,Optional] = msiread('cavity.pln')

Horizontal = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 2.8000e+09
 Slice: 'Elevation'

Vertical = struct with fields:
 PhysicalQuantity: 'Gain'

 polarpattern class

1-5

 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: 0
 Elevation: [360x1 double]
 Frequency: 2.8000e+09
 Slice: 'Azimuth'

Optional = struct with fields:
 name: 'Cavity Antenna Specifications'
 frequency: 2.8000e+09
 gain: [1x1 struct]

Plot the polar pattern of the cavity at azimuth angles.

P = polarpattern(Horizontal.Azimuth,Horizontal.Magnitude);

Add Title to Polar Plot

Create a default monopole antenna and calculate the directivity at 75 MHz.

m = monopole;
M = pattern(m,75e6,0,0:1:360);

Plot the polar pattern of the antenna.

1 Classes

1-6

P = polarpattern(M,'TitleTop','Polar Pattern of Monopole');

Polar Pattern Properties

Create a default dipole antenna and calculate the directivity at 75 MHz.

d = dipole;
D = pattern(d,75e6,0,0:1:360);

Plot the polar pattern of the antenna and display the properties of the plot.

P = polarpattern(D);

 polarpattern class

1-7

details(P)

 internal.polari handle with properties:

 Interactive: 1
 LegendLabels: ''
 AntennaMetrics: 0
 CleanData: 1
 AngleData: [361x1 double]
 MagnitudeData: [361x1 double]
 IntensityData: []
 AngleMarkers: [0x1 struct]
 CursorMarkers: [0x1 struct]
 PeakMarkers: [0x1 struct]
 ActiveDataset: 1
 AngleLimVisible: 0
 LegendVisible: 0
 Span: 0
 TitleTop: ''
 TitleBottom: ''
 Peaks: []
 FontSize: 10
 MagnitudeLim: [-50 10]
 MagnitudeAxisAngle: 75
 MagnitudeTick: [-40 -20 0]
 MagnitudeTickLabelColor: 'k'
 AngleLim: [0 360]
 AngleTickLabel: {1x24 cell}

1 Classes

1-8

 AngleTickLabelColor: 'k'
 TitleTopFontSizeMultiplier: 1.1000
 TitleBottomFontSizeMultiplier: 0.9000
 TitleTopFontWeight: 'bold'
 TitleBottomFontWeight: 'normal'
 TitleTopTextInterpreter: 'none'
 TitleBottomTextInterpreter: 'none'
 TitleTopOffset: 0.1500
 TitleBottomOffset: 0.1500
 ToolTips: 1
 MagnitudeLimBounds: [-Inf Inf]
 MagnitudeFontSizeMultiplier: 0.9000
 AngleFontSizeMultiplier: 1
 AngleAtTop: 90
 AngleDirection: 'ccw'
 AngleResolution: 15
 AngleTickLabelRotation: 0
 AngleTickLabelFormat: '360'
 AngleTickLabelColorMode: 'contrast'
 PeaksOptions: {}
 AngleTickLabelVisible: 1
 Style: 'line'
 DataUnits: 'dB'
 DisplayUnits: 'dB'
 NormalizeData: 0
 ConnectEndpoints: 0
 DisconnectAngleGaps: 0
 EdgeColor: 'k'
 LineStyle: '-'
 LineWidth: 1
 FontName: 'Helvetica'
 FontSizeMode: 'auto'
 GridForegroundColor: [0.8000 0.8000 0.8000]
 GridBackgroundColor: 'w'
 DrawGridToOrigin: 0
 GridOverData: 0
 GridAutoRefinement: 0
 GridWidth: 0.5000
 GridVisible: 1
 ClipData: 1
 TemporaryCursor: 1
 MagnitudeLimMode: 'auto'
 MagnitudeAxisAngleMode: 'auto'
 MagnitudeTickMode: 'auto'
 MagnitudeTickLabelColorMode: 'contrast'
 MagnitudeTickLabelVisible: 1
 MagnitudeUnits: ''
 IntensityUnits: ''
 Marker: 'none'
 MarkerSize: 6
 Parent: [1x1 Figure]
 NextPlot: 'replace'
 ColorOrder: [7x3 double]
 ColorOrderIndex: 1
 SectorsColor: [16x3 double]
 SectorsAlpha: 0.5000
 View: 'full'
 ZeroAngleLine: 0

 polarpattern class

1-9

Remove -Inf and NaN Values in Antenna PolarPattern

Use Clean Data in Antenna Metrics to remove -inf and NaN values in a monopole antenna polar
pattern. It is recommended to use Clean Data for partial data with -inf and NaN values.

m = monopole;
m.GroundPlaneLength = inf;

Plot the beamwidth of the antenna at 70 MHz.

figure;
beamwidth(m,70e6,0,-50:30)

Plot the radiation pattern of the antenna at 70 MHz.

figure;
pattern(m,70e6,0,-50:30);

1 Classes

1-10

Use polarpattern to view antenna metrics of the radiation pattern.

P = polarpattern('gco');
P.AntennaMetrics = 1;

 polarpattern class

1-11

Compare the beamwidth plot and the polarpattern plot. You will see that Antenna Metrics does not
represent the beamwidth correctly.

Use Clean Data to clean the -inf and NaN values.

1 Classes

1-12

After using Clean Data, you see that the polarpattern beamwidth calculation matches the
beamwidth plot calculation.

 polarpattern class

1-13

See Also
Topics
“Interact with Polar Plot”

Introduced in R2016a

1 Classes

1-14

Objects

2

biquad
Create biquad or double-biquad antenna

Description
The biquad antenna is center fed and symmetric about its origin. The default length is chosen for an
operating frequency of 2.8 GHz.

The width of the strip is related to the diameter an equivalent cylinder:

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical dipole.
• r is the radius of equivalent cylindrical dipole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default strip dipole is center-fed. The feed point coincides with the origin. The origin is
located on the Y-Z plane.

2 Objects

2-2

Creation

Syntax
bq = biquad
bq = biquad(Name,Value)

Description

bq = biquad creates a biquad antenna.

bq = biquad(Name,Value) creates a biquad antenna with additional properties specified by one or
more name-value pair arguments. Name is the property name and Value is the corresponding value.
You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN,
ValueN. Properties not specified retain their default values.

Properties
NumLoops — Number of loops
2 (default) | scalar integer

Number of loops for the biquad, specified as a scalar integer. Setting this property to 4 supports a
double biquad antenna.
Example: 'NumLoops',4
Data Types: double

ArmLength — Length of two arms
0.0305 (default) | scalar

Length of two arms, specified as a scalar in meters. The default length is chosen for an operating
frequency of 2.8 GHz.
Example: 'ArmLength',0.0206
Data Types: double

Width — Biquad arm width
1.0000e-03 (default) | scalar

Biquad arm width, specified as a scalar in meters.
Example: 'Width',0.006
Data Types: double

ArmElevation — Angle formed by biquad arms to X-Y plane
45 (default) | scalar

Angle formed by biquad arms to the X-Y plane, specified a scalar in meters.
Example: 'ArmElevation', 50
Data Types: double

 biquad

2-3

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load', lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: bq.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-4

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Biquad Antenna

Create a biquad antenna with arm angles at 50 degrees and view it.

bq = biquad('ArmElevation',50);
show(bq)

 biquad

2-5

Impedance of Biquad Antenna

Calculate the impedance of a biquad antenna over a frequency span 2.5GHz-3GHz.

bq = biquad('ArmElevation',50);
impedance(bq,linspace(2.5e9,3e9,51));

2 Objects

2-6

Double Biquad Antenna

Create and view a double biquad antenna using default property values.

ant = biquad('NumLoops',4)

ant =
 biquad with properties:

 NumLoops: 4
 ArmLength: 0.0305
 ArmElevation: 45
 Width: 1.0000e-03
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 biquad

2-7

See Also
dipole | dipoleFolded | loopCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2015b

2 Objects

2-8

bowtieRounded
Create rounded bowtie dipole antenna

Description
The bowtieRounded object is a planar bowtie antenna, with rounded edges, on the Y–Z plane. The
default rounded bowtie is center fed. The feed point coincides with the origin. The origin is located on
the Y-Z plane.

Creation
Syntax
br = bowtieRounded
br = bowtieRounded(Name,Value)

Description

br = bowtieRounded creates a half-wavelength planar bowtie antenna with rounded edges.

br = bowtieRounded(Name,Value) creates a planar bowtie antenna with rounded edges, with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

 bowtieRounded

2-9

Properties
Length — Rounded bowtie length
0.2000 (default) | scalar

Rounded bowtie length, specified a scalar in meters. By default, the length is chosen for the operating
frequency of 490 MHz.
Example: 'Length',3
Data Types: double

FlareAngle — Rounded bowtie flare angle
90 (default) | scalar

Rounded bowtie flare angle, specified a scalar in degrees.

Note Flare angle should be less than 175 degrees and greater than 5 degrees.

Example: 'FlareAngle',80
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load', lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: br.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

2 Objects

2-10

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Center-Fed Rounded Bowtie Antenna

Create and view a center-fed rounded bowtie that has a flare angle of 60 degrees.

b = bowtieRounded('FlareAngle',60);
show(b);

 bowtieRounded

2-11

Impedance of Rounded Bowtie Antenna

Calculate and plot the impedance of a rounded bowtie over a frequency range of 300 MHz-500 MHz.

b = bowtieRounded('FlareAngle',60);
impedance(b,linspace(300e6,500e6,51))

2 Objects

2-12

References
[1] Balanis, C.A.Antenna Theory: Analysis and Design.3rd Ed. New York: Wiley, 2005.

[2] Brown, G.H., and O.M. Woodward Jr. “Experimentally Determined Radiation Characteristics of
Conical and Triangular Antennas”. RCA Review. Vol.13, No.4, Dec.1952, pp. 425–452

See Also
bowtieTriangular | dipole | dipoleFolded

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 bowtieRounded

2-13

bowtieTriangular
Create planar bowtie dipole antenna

Description
The bowtieTriangular object is a planar bowtie antenna on the Y-Z plane. The default planar
bowtie dipole is center-fed. The feed point coincides with the origin. The origin is located on the Y-Z
plane.

Creation

Syntax
bt = bowtieTriangular
bt = bowtieTriangular(Name,Value)

Description

bt = bowtieTriangular creates a half-wavelength planar bowtie antenna.

bt = bowtieTriangular(Name,Value) creates a planar bowtie antenna with additional
properties specified by one or more name-value pair arguments. Name is the property name and

2 Objects

2-14

Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Length — Planar bowtie length
0.2000 (default) | scalar

Planar bowtie length, specified as a scalar in meters. By default, the length is chosen for the
operating frequency of 410 MHz.
Example: 'Length',3
Data Types: double

FlareAngle — Planar bowtie flare angle
90 (default) | scalar

Planar bowtie flare angle near the feed, specified as a scalar in meters.

Note Flare angle should be less than 175 degrees and greater than 5 degrees.

Example: 'FlareAngle',80
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load', lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: bt.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 bowtieTriangular

2-15

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Center-Fed Planar Bowtie Antenna

Create and view a center-fed planar bowtie antenna that has a 60 degrees flare angle.

2 Objects

2-16

b = bowtieTriangular('FlareAngle',60)

b =
 bowtieTriangular with properties:

 Length: 0.2000
 FlareAngle: 60
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(b)

Impedance of Planar Bowtie Antenna

Calculate and plot the impedance of a planar bowtie antenna over a frequency range of 300 MHz-500
MHz.

b = bowtieTriangular('FlareAngle',60);
impedance(b,linspace(300e6,500e6,51))

 bowtieTriangular

2-17

References
[1] Balanis, C.A.Antenna Theory: Analysis and Design.3rd Ed. New York: Wiley, 2005.

[2] Brown, G.H., and O.M. Woodward Jr. “Experimentally Determined Radiation Characteristics of
Conical and Triangular Antennas”. RCA Review. Vol.13, No.4, Dec.1952, pp. 425–452

See Also
bowtieRounded | dipole | dipoleVee

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-18

cavity
Create cavity-backed antenna

Description
The cavity object is a cavity-backed antenna located on the X-Y-Z plane. The default cavity antenna
has a dipole as an exciter. The feed point is on the exciter.

Creation

Syntax
c = cavity
c = cavity(Name,Value)

 cavity

2-19

Description

c = cavity creates a cavity backed antenna located on the X-Y-Z plane. By default, the dimensions
are chosen for an operating frequency of 1 GHz.

c = cavity(Name,Value) creates a cavity-backed antenna, with additional properties specified by
one or more name–value pair arguments. Name is the property name and Value is the corresponding
value. You can specify several name-value pair arguments in any order as Name1, Value1, ...,
NameN, ValueN. Properties not specified retain their default values.

Properties
Exciter — Antenna type used as exciter
dipole (default) | object

Antenna type used as an exciter, specified as an object. Except reflector and cavity antenna elements,
you can use all the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',dipole
Data Types: char | string

Substrate — Type of dielectric material
'Air' (default) | object

Type of dielectric material used as a substrate, specified as an object. For more information see,
dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); cavity.Substrate = d

Length — Length of rectangular cavity along x-axis
0.2000 (default) | scalar

Length of the rectangular cavity along the x-axis, specified as a scalar in meters.
Example: 'Length',30e-2
Data Types: double

Width — Width of rectangular cavity along y-axis
0.2000 (default) | scalar

Width of the rectangular cavity along the y-axis, specified as a scalar in meters.
Example: 'Width',25e-2
Data Types: double

Height — Height of rectangular cavity along z-axis
0.0750 (default) | scalar

Height of the rectangular cavity along the z-axis, specified as a scalar in meters.

2 Objects

2-20

Example: 'Height',7.5e-2
Data Types: double

Spacing — Distance between exciter and base of cavity
0.0750 (default) | scalar

Distance between the exciter and the base of the cavity, specified as a scalar in meters.
Example: 'Spacing',7.5e-2
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load', lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: c.Load = lumpedElement('Impedance',75)

EnableProbeFeed — Create probe feed from backing structure to exciter
0 (default) | 1

Create probe feed from backing structure to exciter, specified as a 0 or 1. By default, probe feed is
not enabled.
Example: 'EnableProbeFeed',1
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

 cavity

2-21

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Cavity-Backed Antenna.

Create and view a cavity-backed dipole antenna with 30 cm length, 25 cm width, 7.5 cm height and
spaced 7.5 cm from the bowtie for operation at 1 GHz.

c = cavity('Length',30e-2, 'Width',25e-2,'Height',7.5e-2,'Spacing',7.5e-2);
show(c)

2 Objects

2-22

Radiation Pattern of Cavity-Backed Antenna

Create a cavity-backed antenna using a dielectric substrate 'FR4'.

d = dielectric('FR4');
c = cavity('Length',30e-2,'Width',25e-2,'Height',20.5e-3,'Spacing',7.5e-3,...
 'Substrate',d)

c =
 cavity with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 Length: 0.3000
 Width: 0.2500
 Height: 0.0205
 Spacing: 0.0075
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(c)

 cavity

2-23

Plot the radiation pattern of the antenna at a frequency of 1 GHz.

figure
pattern(c,1e9)

2 Objects

2-24

References
[1] Balanis, C.A.Antenna Theory: Analysis and Design.3rd Ed. New York: Wiley, 2005.

See Also
reflector | spiralArchimedean | spiralEquiangular

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 cavity

2-25

dipole
Create strip dipole antenna

Description
The dipole object is a strip dipole antenna on the Y-Z plane.

The width of the dipole is related to the diameter of an equivalent cylindrical dipole by the equation

w = 2d = 4r

where:

• d is the diameter of equivalent cylindrical dipole.
• r is the radius of equivalent cylindrical dipole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default strip dipole is center-fed. The feed point coincides with the origin. The origin is
located on the Y-Z plane.

2 Objects

2-26

Creation
Syntax
d = dipole
d = dipole(Name,Value)

Description

d = dipole creates a half-wavelength strip dipole antenna on the Y-Z plane.

d = dipole(Name,Value) creates a dipole antenna, with additional properties specified by one or
more name-value pair arguments. Name is the property name and Value is the corresponding value.
You can specify several name-value pair arguments in any order as Name1, Value1, ..., NameN,
ValueN. Properties you do not specify retains their default values.

Properties
Length — Dipole length
2 (default) | scalar

Dipole length, specified as a scalar in meters. By default, the length is chosen for an operating
frequency of 75 MHz.
Example: 'Length',3
Data Types: double

Width — Dipole width
0.1000 (default) | scalar

Dipole width, specified as a scalar in meters.

Note Dipole width should be less than 'Length'/5 and greater than 'Length'/1001. [2]

Example: 'Width',0.05
Data Types: double

FeedOffset — Signed distance from center of dipole
0 (default) | scalar

Signed distance from center of dipole, specified as a scalar in meters. The feed location is on Y-Z
plane.
Example: 'FeedOffset',3
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.

 dipole

2-27

Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: d.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface

2 Objects

2-28

current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Dipole Antenna

Create and view a dipole with 2 m length and 0.5 m width.

d = dipole('Width',0.05)

d =
 dipole with properties:

 Length: 2
 Width: 0.0500
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(d)

 dipole

2-29

Impedance of Dipole Antenna

Calculate the impedance of a dipole over a frequency range of 50 MHz - 100 MHz.

d = dipole('Width',0.05);
impedance(d,linspace(50e6,100e6,51))

2 Objects

2-30

Infinite Reflector Backed Dielectric Substrate Antenna

Design a dipole antenna backed by a dielectric substrate and an infinite reflector.

Create a dipole antenna of length, 0.15 m, and width, 0.015 m.

d = dipole('Length',0.15,'Width',0.015, 'Tilt',90,'TiltAxis',[0 1 0]);

Create a reflector using the dipole antenna as an exciter and the dielectric, teflon as the substrate.

t = dielectric('Teflon')

t =
 dielectric with properties:

 Name: 'Teflon'
 EpsilonR: 2.1000
 LossTangent: 2.0000e-04
 Thickness: 0.0060

For more materials see catalog

rf = reflector('Exciter',d,'Spacing',7.5e-3,'Substrate',t);

Set the groundplane length of the reflector to inf. View the structure.

 dipole

2-31

rf.GroundPlaneLength = inf;
show(rf)

Calculate the radiation pattern of the antenna at 70 MHz.

pattern(rf,70e6)

2 Objects

2-32

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
cylinder2strip | loopCircular | monopole | slot

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 dipole

2-33

dipoleFolded
Create folded dipole antenna

Description
The dipolefolded object is a folded dipole antenna on the X-Y plane.

The width of the dipole is related to the diameter of an equivalent cylindrical dipole by the equation

w = 2d = 4r

, where

• d is the diameter of the equivalent cylindrical pole
• r is the radius of the equivalent cylindrical pole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default folded dipole is center-fed. The feed point of the dipole coincides with the origin.
The origin is located on the X-Y plane. When compared to the planar dipole, the folded dipole
structure increases the input impedance of the antenna.

Creation

Syntax
dF = dipoleFolded
dF = dipoleFolded(Name,Value)

2 Objects

2-34

Description

dF = dipoleFolded creates a half-wavelength folded dipole antenna.

dF = dipoleFolded(Name,Value) creates a half-wavelength folded dipole antenna with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Length — Folded dipole length
2 (default) | scalar

Folded dipole length, specified as a scalar in meters. By default, the length is chosen for an operating
frequency of 70.5 MHz.
Example: 'Length',3
Data Types: double

Width — Folded dipole width
0.0040 (default) | scalar

Folded dipole width, specified as a scalar in meters.

Note Folded dipole width should be less than 'Length'/20 and greater than 'Length'/1001. [2]

Example: 'Width',0.05
Data Types: double

Spacing — Shorting stub lengths at dipole ends
0.0245 (default) | scalar

Shorting stub lengths at dipole ends, specified as a scalar in meters. The value must be less than
Length/50.
Example: 'Spacing',3
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: dF.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

 dipoleFolded

2-35

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure

2 Objects

2-36

optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Folded Dipole Antenna

Create and view a folded dipole with 2 m length and 0.05 m width.

df = dipoleFolded('Length',2,'Width',0.05)

df =
 dipoleFolded with properties:

 Length: 2
 Width: 0.0500
 Spacing: 0.0245
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(df)

 dipoleFolded

2-37

Radiation Pattern of Folded Dipole Antenna

Plot the radiation pattern of a folded dipole at 70.5 MHz.

df = dipoleFolded

df =
 dipoleFolded with properties:

 Length: 2
 Width: 0.0180
 Spacing: 0.0245
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

pattern(df, 70.5e6);

2 Objects

2-38

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
bowtieTriangular | cylinder2strip | dipole | monopole

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 dipoleFolded

2-39

dipoleVee
Create V-dipole antenna

Description
The dipoleVee object is a planar V-dipole antenna in the X-Y plane.

The width of the dipole is related to the circular cross-section by the equation

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical pole
• r is the radius of equivalent cylindrical pole

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The V-dipole antenna is bent around the feed point. The default V-dipole is center-fed and is in
the X-Y plane. The feed point of the V-dipole antenna coincides with the origin.

Creation

Syntax
dv = dipoleVee
dv = dipoleVee(Name,Value)

2 Objects

2-40

Description

dv = dipoleVee creates a half-wavelength V-dipole antenna.

dv = dipoleVee(Name,Value) creates a half-wavelength V-dipole antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
ArmLength — Length of two arms
[1 1] (default) | two-element vector

Length of two arms, specified as a two-element vector in meters. By default, the arm lengths are
chosen for an operating frequency of 75 MHz.
Example: 'ArmLength',[1,3]
Data Types: double

Width — V-dipole arm width
0.1000 (default) | scalar

V-dipole arm width, specified as a scalar in meters.

Note Dipole width should be less than Total Arm Length/5 and greater than Total Arm
Length/1001. [2]

Example: 'Width',0.05
Data Types: double

ArmElevation — Angle made by two arms about X-Y plane
[45 45] (default) | two-element vector

Angle made by two arms about X-Y plane, specified as a two-element vector in degrees.
Example: 'ArmElevation',[55 35]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: dv.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

 dipoleVee

2-41

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure

2 Objects

2-42

optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create V-Dipole Antenna

Create and view a center-fed V-dipole that has 50 degree arm angles .

dv = dipoleVee('ArmElevation',[50 50])

dv =
 dipoleVee with properties:

 ArmLength: [1 1]
 ArmElevation: [50 50]
 Width: 0.1000
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(dv)

 dipoleVee

2-43

Impedance of V-Dipole Antenna

Calculate the impedance of a V-dipole antenna over the frequency range of 50 MHz - 100 MHz.

dv = dipoleVee('ArmElevation',[50 50]);
impedance(dv,linspace(50e6,100e6,51))

2 Objects

2-44

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook. 4th Ed. New York: McGraw-Hill, 2007.

See Also
cylinder2strip | dipole | dipoleFolded | loopCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 dipoleVee

2-45

dipoleMeander
Create meander dipole antenna

Description
The dipoleMeander class creates a meander dipole antenna with four dipoles. The antenna is center
fed and it is symmetric about its origin. The first resonance of meander dipole antenna is at 200 MHz.

The width of the dipole is related to the diameter of an equivalent cylindrical dipole by the equation

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical dipole.
• r is the radius of equivalent cylindrical dipole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default strip dipole is center-fed. The feed point coincides with the origin. The origin is
located on the X-Y plane.

Creation

Syntax
dm = dipoleMeander
dm = dipoleMeander(Name,Value)

2 Objects

2-46

Description

dm = dipoleMeander creates a meander dipole antenna with four dipoles.

dm = dipoleMeander(Name,Value) creates a meander dipole antenna with four dipoles, with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Width — Dipole width
0.0040 (default) | scalar

Dipole width, specified as a scalar in meters.
Example: 'Width',0.05
Data Types: double

ArmLength — Length of individual dipole arms
[0.0880 0.0710 0.0730 0.0650] (default) | vector

Length of individual dipole arms, specified as a vector in meters. The total number of dipole arms
generated is :

2 ∗ N − 1

where N is the number of specified arm lengths.
Example: 'ArmLength',[0.6000 0.5000 1 0.4000]
Data Types: double

NotchLength — Notch length along length of antenna
0.0238 (default) | scalar

Notch length along the length of the antenna, specified as a scalar in meters.

For example, in a dipole meander antenna with seven stacked arms there are six notches.
Example: 'NotchLength',1
Data Types: double

NotchWidth — Notch width perpendicular to length of antenna
0.0238 (default) | scalar

Notch width perpendicular to the length of the antenna, specified as a scalar in meters.
Example: 'NotchWidth',1
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.

 dipoleMeander

2-47

Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: dm.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface

2 Objects

2-48

current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Meander Dipole Antenna

Create and view the default meander dipole antenna.

dm = dipoleMeander

dm =
 dipoleMeander with properties:

 Width: 0.0040
 ArmLength: [0.0880 0.0710 0.0730 0.0650]
 NotchLength: 0.0238
 NotchWidth: 0.0170
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(dm)

 dipoleMeander

2-49

Plot Radiation Pattern Of Meander Dipole Antenna

Plot the radiation pattern of meander dipole antenna at a 200 MHz frequency.

dm = dipoleMeander;
pattern(dm,200e6)

2 Objects

2-50

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

See Also
dipole | dipoleFolded | loopCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 dipoleMeander

2-51

dipoleBlade
Create blade dipole antenna

Description
The dipoleBlade object is a wideband blade dipole antenna oriented along the X-Y plane.

The width of the dipole is related to the circular cross-section by the equation,

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical pole
• r is the radius of equivalent cylindrical pole

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width.

2 Objects

2-52

Creation

Syntax
db = dipoleBlade
db = dipoleBlade(Name,Value)

Description

db = dipoleBlade creates a wideband blade dipole antenna on the X-Y plane.

db = dipoleBlade(Name,Value) creates a wideband blade dipole antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Length — Blade dipole length
0.1170 (default) | scalar

Blade dipole length, specified as a scalar in meters.
Example: 'Length',0.5
Data Types: double

Width — Blade dipole width
0.1400 (default) | scalar

Blade dipole width, specified as a scalar in meters.
Example: 'Width',0.2
Data Types: double

TaperLength — Taper length
0.1120 (default) | scalar

Taper length, specified as a scalar in meters.
Example: 'TaperLength',0.500
Data Types: double

FeedWidth — Blade dipole feed width
0.0030 (default) | scalar

Blade dipole feed width, specified as a scalar in meters.
Example: 'FeedWidth',0.006
Data Types: double

FeedGap — Blade dipole feed length or distance between the two wings of the dipole
0.0030 (default) | scalar

 dipoleBlade

2-53

Blade dipole feed length or distance between the two wings of the dipole, specified as a scalar in
meters.
Example: 'FeedGap',0.006
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: db.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

2 Objects

2-54

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Blade Dipole and Radiation Pattern

Create and view a default blade dipole.

db = dipoleBlade

db =
 dipoleBlade with properties:

 Length: 0.1170
 TaperLength: 0.1120
 Width: 0.1400
 FeedWidth: 0.0030
 FeedGap: 0.0030
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(db);

 dipoleBlade

2-55

Plot the radiation pattern of the blade dipole at 600 MHz.

pattern(db,600e6)

2 Objects

2-56

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook. 4th Ed. New York: McGraw-Hill, 2007.

See Also
cylinder2strip | dipole | loopCircular | slot

Topics
“Rotate Antennas and Arrays”

Introduced in R2017a

 dipoleBlade

2-57

dipoleCycloid
Create cycloid dipole antenna

Description
The dipoleCycloid object is a half-wavelength cycloid dipole antenna. For the default cycloid
dipole, the feed point is on the loop section. The default length is for an operating frequency of 48
MHz.

The width of the dipole is related to the circular cross-section by the equation

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical pole
• r is the radius of equivalent cylindrical pole

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width.

2 Objects

2-58

Creation
Syntax
dc = dipoleCycloid
dc = dipoleCycloid(Name,Value)

Description

dc = dipoleCycloid creates a half-wavelength cycloid dipole antenna oriented along Z-axis.

dc = dipoleCycloid(Name,Value) creates a half-wavelength cycloid dipole antenna, with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Length — Dipole length along z-axis
1.2200 (default) | scalar

Dipole length along z-axis, specified as a scalar in meters. By default, the length is for an operating
frequency of 48 MHz.
Example: 'Length',0.9
Data Types: double

Width — Dipole width
0.0508 (default) | scalar

Dipole width, specified as a scalar in meters.
Example: 'Width',0.09
Data Types: double

LoopRadius — Circular loop radius in X-Y plane
0.3100 (default) | scalar

Circular loop radius in X-Y plane, specified as a scalar in meters.
Example: 'LoopRadius',0.500
Data Types: double

Gap — Gap of loop in X-Y plane
0.0400 (default) | scalar

Gap of loop in X-Y plane, specified as a scalar in meters.
Example: 'Gap',0.006
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

 dipoleCycloid

2-59

Lumped elements added to the antenna feed, specified as the comma-separated pair consisting of
'Load' and a lumped element object handle. For more information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: dc.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna

2 Objects

2-60

beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Cycloid Dipole

Create a default cycloid dipole antenna using the dipoleCycloid object and view it.

dc = dipoleCycloid

dc =
 dipoleCycloid with properties:

 Length: 1.2200
 Width: 0.0508
 LoopRadius: 0.3100
 Gap: 0.0400
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(dc)

 dipoleCycloid

2-61

Impedance of Cycloid Dipole

Calculate the impedance of a cycloid dipole of width, 0.05 m, over a frequency span of 50 MHz - 100
MHz.

d = dipoleCycloid('Width',0.05);
impedance(d,linspace(50e6,100e6,51))

2 Objects

2-62

Radiation Pattern of Cycloid Dipole

Plot the radiation pattern of a cycloid dipole of width,0.05 m, at a frequency of 48 MHz.

d = dipoleCycloid('Width',0.05)

d =
 dipoleCycloid with properties:

 Length: 1.2200
 Width: 0.0500
 LoopRadius: 0.3100
 Gap: 0.0400
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

pattern(d,48e6)

 dipoleCycloid

2-63

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook. 4th Ed. New York: McGraw-Hill, 2007.

See Also
cylinder2strip | dipole | loopCircular | slot

Topics
“Rotate Antennas and Arrays”

Introduced in R2017a

2 Objects

2-64

dipoleHelix
Create helical dipole antenna

Description
The dipoleHelix object is a helical dipole antenna. The antenna is typically center-fed. You can
move the feed along the antenna length using the feed offset property. Helical dipoles are used in
satellite communications and wireless power transfers.

The width of the strip is related to the diameter of an equivalent cylinder by this equation

w = 2d = 4r

where:

• w is the width of the strip.
• d is the diameter of an equivalent cylinder.
• r is the radius of an equivalent cylinder.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default helical dipole antenna is center-fed. The circular ground plane is on the X-Y plane.
Commonly, helical dipole antennas are used in axial mode. In this mode, the helical dipole
circumference is comparable to the operating wavelength, and has maximum directivity along its
axis. In normal mode, the helical dipole radius is small compared to the operating wavelength. In this
mode, the helical dipole radiates broadside, that is, in the plane perpendicular to its axis. The basic
equation for the helical dipole antenna is:

x = rcos(θ)
y = rsin(θ)
z = Sθ

where:

• r is the radius of the helical dipole.
• θ is the winding angle.
• S is the spacing between turns.

For a given pitch angle in degrees, use the helixpitch2spacing utility function to calculate the
spacing between the turns in meters.

 dipoleHelix

2-65

Creation
Syntax
dh = dipoleHelix
dh = dipoleHelix(Name,Value)

Description

dh = dipoleHelix creates a helical dipole antenna. The default antenna operates around 2 GHz.

dh = dipoleHelix(Name,Value) creates a helical dipole antenna, with additional properties
specified by one or more name–value pair arguments. Name is the property name and Value is the
corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Radius — Turn radius
0.0220 (default) | scalar

2 Objects

2-66

Turn radius, specified as a scalar in meters.
Example: 'Radius',2
Data Types: double

Width — Strip width
1.0000e-03 (default) | scalar

Strip width, specified as a scalar in meters.

Note Strip width should be less than 'Radius'/5 and greater than 'Radius'/250. [4]

Example: 'Width',5
Data Types: double

Turns — Number of turns of helical dipole
3 (default) | scalar

Number of turns of the helical dipole, specified a scalar.
Example: 'Turns',2
Data Types: double

Spacing — Spacing between turns
0.0350 (default) | scalar

Spacing between turns, specified as a scalar in meters.
Example: 'Spacing',1.5
Data Types: double

WindingDirection — Direction of helical dipole turns (windings)
'CCW' (default) | 'CW'

Direction of helical dipole turns (windings), specified as 'CW' or 'CCW'.
Example: 'WindingDirection','CW'
Data Types: char | string

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: dh.Load = lumpedElement('Impedance',75)

FeedOffset — Signed distance of feedpoint from origin
0 (default) | two-element vector

 dipoleHelix

2-67

Signed distance from center along length and width of ground plane, specified as a two-element
vector in meters. Use this property to adjust the location of the feedpoint relative to the ground plane
and patch.
Example: 'FeedOffset',[0.01 0.01]
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna

2 Objects

2-68

beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Helical Dipole Antenna

Create a default helical dipole antenna and view it.

dh = dipoleHelix

dh =
 dipoleHelix with properties:

 Radius: 0.0220
 Width: 1.0000e-03
 Turns: 3
 Spacing: 0.0350
 WindingDirection: 'CCW'
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(dh)

 dipoleHelix

2-69

Radiation Pattern of Helical Dipole

Create a four-turn helical dipole antenna with a turn radius of 28 mm and a strip width of 1.2 mm.

dh = dipoleHelix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
show(dh)

2 Objects

2-70

Plot the radiation pattern of the helical dipole at 1.8 GHz.

pattern(dh, 1.8e9);

 dipoleHelix

2-71

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

[2] Volakis, John. Antenna Engineering Handbook. 4th Ed. New York: McGraw-Hill, 2007.

See Also
cylinder2strip | helix | helixpitch2spacing | monopole | pifa | spiralArchimedean

Topics
“Rotate Antennas and Arrays”

Introduced in R2016b

2 Objects

2-72

helix
Create helix or conical helix antenna on ground plane

Description
Use the helix object to create a helix or conical helix antenna on a circular ground plane. The helix
antenna is a common choice in satellite communication.

The width of the strip is related to the diameter of an equivalent cylinder by the equation

w = 2d = 4r

where:

• w is the width of the strip.
• d is the diameter of an equivalent cylinder.
• r is the radius of an equivalent cylinder.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default helix antenna is end-fed. The circular ground plane is on the X-Y plane. Commonly,
helix antennas are used in axial mode. In this mode, the helix circumference is comparable to the
operating wavelength and the helix has maximum directivity along its axis. In normal mode, the helix
radius is small compared to the operating wavelength. In this mode, the helix radiates broadside, that
is, in the plane perpendicular to its axis. The basic equation for the helix is

x = rcos(θ)
y = rsin(θ)
z = Sθ

where

• r is the radius of the helix.
• θ is the winding angle.
• S is the spacing between turns.

For a given pitch angle in degrees, use the helixpitch2spacing utility function to calculate the
spacing between the turns in meters.

 helix

2-73

Note In an array of helix antennas, the circular ground plane of the helix is converted to rectangular
ground plane.

Creation

Syntax
ant = helix
ant = helix(Name,Value)

Description

ant = helix creates a helix antenna operating in axial mode. The default antenna operates around
2 GHz.

ant = helix(Name,Value) sets properties using one or more name-value pairs. For example, ant
= helix('Radius',28e-03) creates a helix with turns of radius 28e-03 m.

Output Arguments

ant — Helix antenna
helix object

Helix antenna, returned as a helix object.

2 Objects

2-74

Properties
Radius — Radius of turns
0.0220 (default) | positive scalar integer | two-element vector

Radius of the turns, specified as a positive scalar integer in meters or a two element vector with each
element unit in meters. In the two-element vector, the first element specifies the bottom radius and
the second element specifies the top radius of the conical helix antenna.
Example: 'Radius',[28e-03 30e-03]
Example: ant.Radius = [28e-03 30e-03]
Data Types: double

Width — Strip width
1.0000e-03 (default) | scalar

Strip width, specified as a scalar in meters.

Note Strip width should be less than 'Radius'/5 and greater than 'Radius'/250. [4]

Example: 'Width',5
Example: ant.Width = 5
Data Types: double

Turns — Number of turns of helix
3 (default) | scalar

Number of turns of the helix, specified as a scalar.
Example: 'Turns',2
Example: ant.Turns = 2
Data Types: double

Spacing — Spacing between turns
0.0350 (default) | scalar

Spacing between turns, specified as a scalar in meters.
Example: 'Spacing',1.5
Example: ant.Spacing = 1.5
Data Types: double

WindingDirection — Direction of helix turns (windings)
'CW' | 'CCW'

Direction of helix turns (windings), specified as 'CW' or 'CCW'.
Example: 'WindingDirection',CW
Example: ant.WindingDirection = CW

 helix

2-75

Data Types: char | string

GroundPlaneRadius — Ground plane radius
0.0750 (default) | scalar in meters

Ground plane radius, specified as a scalar in meters. By default, the ground plane is on the X-Y plane
and is symmetrical about the origin.
Example: 'GroundPlaneRadius',2.05
Example: ant.GroundPlaneRadius = 2.05
Data Types: double

FeedStubHeight — Feeding stub height from ground
1.0000e-03 (default) | scalar

Feeding stub height from ground, specified as a scalar in meters. B
Example: 'FeedStubHeight',2.000e-03
Example: ant.FeedStubHeight = 2.000e-03

Note The default value is chosen to allow backward compatibility.

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-76

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Helix Antenna

Create and view a helix antenna that has a 28 mm turn radius, 1.2 mm strip width, and 4 turns.

 helix

2-77

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4)

hx =
 helix with properties:

 Radius: 0.0280
 Width: 0.0012
 Turns: 4
 Spacing: 0.0350
 WindingDirection: 'CCW'
 FeedStubHeight: 1.0000e-03
 GroundPlaneRadius: 0.0750
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(hx)

Radiation Pattern of Helix Antenna

Plot the radiation pattern of a helix antenna.

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
pattern(hx,1.8e9);

2 Objects

2-78

Calculate Spacing of Helix Antenna with Varying Radius

Calculate the spacing of a helix that has a pitch of 12 degrees and a radius that varies from 20 mm to
22 mm in steps of 0.5 mm.

s = helixpitch2spacing(12,20e-3:0.5e-3:22e-3)

s = 1×5

 0.0267 0.0274 0.0280 0.0287 0.0294

Radiation Pattern of Helix Antenna

Plot the radiation pattern of a helix antenna with transparency specified as 0.5.

p = PatternPlotOptions

p =
 PatternPlotOptions with properties:

 Transparency: 1

 helix

2-79

 SizeRatio: 0.9000
 MagnitudeScale: []
 AntennaOffset: [0 0 0]

p.Transparency = 0.5;
ant = helix;
pattern(ant,2e9,'patternOptions',p)

To understand the effect of Transparency, chose Overlay Antenna in the radiation pattern plot.

This option overlays the helix antenna on the radiation pattern.

2 Objects

2-80

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

[3] Zhang, Yan, Q. Ding, J. Chen, S. Lu, Z. Zhu and L. L. Cheng. “A Parametric Study of Helix Antenna
for S-Band Satellite Communications.” 9th International Symposium on Antenna Propagation
and EM Theory (ISAPE). 2010, pp. 193–196.

[4] Djordjevic, A.R., Zajic, A.G., Ilic, M. M., Stuber, G.L. “Optimization of Helical antennas (Antenna
Designer's Notebook)” IEEE Antennas and Propagation Magazine. December, 2006, pp. 107,
pp.115.

See Also
cylinder2strip | helixMultifilar | helixpitch2spacing | monopole | pifa |
spiralArchimedean

Topics
“Rotate Antennas and Arrays”

 helix

2-81

Introduced in R2015a

2 Objects

2-82

horn
Create horn antenna

Description
The horn object is a pyramidal horn antenna with a standard-gain, 15 dBi. The default horn antenna
operates in the X-Ku band, which ranges from 10 GHz to 15 GHz. By default, the horn antenna feed is
a WR-75 rectangular waveguide with an operating frequency at 7.87 GHz.

For a given flare angles of the horn and dimensions of the waveguide, use the hornangle2size
utility function to calculate the equivalent flare width and flare height of the horn.

Creation
Syntax
hr = horn

 horn

2-83

hr = horn(Name,Value)

Description

hr = horn creates a standard-gain pyramidal horn antenna.

hr = horn(Name,Value) creates a horn antenna with additional properties specified by one or
more name-value pair arguments. Name is the property name and Value is the corresponding value.
You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Properties
FlareLength — Flare length of horn
0.1020 (default) | scalar

Flare length of horn, specified as a scalar in meters.
Example: 'FlareLength',0.35
Data Types: double

FlareWidth — Flare width of horn
0.0571 (default) | scalar

Flare width of horn, specified as a scalar in meters.
Example: 'FlareWidth',0.2
Data Types: double

FlareHeight — Flare height of horn
0.0338 (default) | scalar

Flare height of horn, specified as a scalar in meters.
Example: 'FlareHeight',0.15
Data Types: double

Length — Rectangular waveguide length
0.0500 (default) | scalar

Rectangular waveguide length, specified as a scalar in meters.
Example: 'Length',0.09
Data Types: double

Width — Rectangular waveguide width
0.0190 (default) | scalar

Rectangular waveguide width, specified as a scalar in meters.
Example: 'Width',0.05
Data Types: double

2 Objects

2-84

Height — Rectangular waveguide height
0.0095 (default) | scalar

Rectangular waveguide height, specified as a scalar in meters.
Example: 'Height',0.0200
Data Types: double

FeedHeight — Height of feed
0.0048 (default) | scalar

Height of feed, specified as a scalar in meters.
Example: 'FeedHeight',0.0050
Data Types: double

FeedWidth — Width of feed
1.0000e-04 (default) | scalar

Width of feed, specified as a scalar in meters.
Example: 'FeedWidth',5e-05
Data Types: double

FeedOffset — Signed offset of feedpoint from center of ground plane
[–0.0155 0] (default) | two-element vector

Signed offset from center of ground plane, specified as a two-element vector in meters.
Example: 'FeedOffset',[–0.0070 0.01]
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: hr.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

 horn

2-85

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

2 Objects

2-86

Examples

Default Horn Antenna

Create and view a default horn antenna.

h = horn

h =
 horn with properties:

 FlareLength: 0.1020
 FlareWidth: 0.0571
 FlareHeight: 0.0338
 Length: 0.0500
 Width: 0.0190
 Height: 0.0095
 FeedWidth: 1.0000e-04
 FeedHeight: 0.0048
 FeedOffset: [-0.0155 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(h)

 horn

2-87

References
[1] Balanis, Constantine A.Antenna Theory. Analysis and Design. 3rd Ed. New York: John Wiley and

Sons, 2005.

See Also
hornangle2size | waveguide

Topics
“Rotate Antennas and Arrays”

Introduced in R2016a

2 Objects

2-88

invertedF
Create inverted-F antenna over rectangular ground plane

Description
The invertedF object is an inverted-F antenna mounted over a rectangular ground plane.

The width of the metal strip is related to the diameter of an equivalent cylinder by the equation

w = 2d = 4r

where:

• d is the diameter of equivalent cylinder
• r is the radius of equivalent cylinder

For a given cylinder radius, use the utility function cylinder2strip to calculate the equivalent
width. The default inverted-F antenna is center-fed. The feed point coincides with the origin. The
origin is located on the X-Y plane.

 invertedF

2-89

Creation

Syntax
f = invertedF
f = invertedF(Name,Value)

Description

f = invertedF creates an inverted-F antenna mounted over a rectangular ground plane. By
default, the dimensions are chosen for an operating frequency of 1.7 GHz.

f = invertedF(Name,Value) creates an inverted-F antenna, with additional properties specified
by one, or more name-value pair arguments. Name is the property name and Value is the
corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Height — Vertical element height along z-axis
0.0140 (default) | scalar

Vertical element height along z-axis, specified a scalar in meters.
Example: 'Height',3
Data Types: double

Width — Strip width
0.0020 (default) | scalar

Strip width, specified as a scalar in meters.

Note Strip width should be less than 'Height'/4 and greater than 'Height'/1001. [2]

Example: 'Width',0.05
Data Types: double

LengthToOpenEnd — Stub length from feed to open end
0.0310 (default) | scalar

Stub length from feed to open end, specified as a scalar in meters.
Example: 'LengthToOpenEnd',0.05

LengthToShortEnd — Stub length from feed to shorting end
0.0060 (default) | scalar

Stub length from feed to shorting end, specified as a scalar in meters.
Example: 'LengthToShortEnd',0.0050

2 Objects

2-90

GroundPlaneLength — Ground plane length along x-axis
0.1000 (default) | scalar

Ground plane length along x-axis, specified as a scalar in meters. Setting 'GroundPlaneLength' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',4
Data Types: double

GroundPlaneWidth — Ground plane width along y-axis
0.1000 (default) | scalar

Ground plane width along y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',2.5
Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector.
Example: 'FeedOffset',[2 1]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: f.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 invertedF

2-91

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

2 Objects

2-92

Create and View Inverted-F Antenna

Create and view an inverted-F antenna with 14 mm height over a ground plane of dimensions 200
mm-by-200 mm.

f = invertedF('Height',14e-3, 'GroundPlaneLength',200e-3, ...
 'GroundPlaneWidth',200e-3);
show(f)

Plot Radiation Pattern of Inverted-F

This example shows you how to plot the radiation pattern of an inverted-F antenna for a frequency of
1.3 GHz.

f = invertedF('Height',14e-3, 'GroundPlaneLength', 200e-3, ...
 'GroundPlaneWidth', 200e-3);
pattern(f,1.39e9)

 invertedF

2-93

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
cylinder2strip | invertedL | patchMicrostrip | pifa

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-94

invertedL
Create inverted-L antenna over rectangular ground plane

Description
The invertedL object is an inverted-L antenna mounted over a rectangular ground plane.

The width of the metal strip is related to the diameter of an equivalent cylinder by the equation

w = 2d = 4r

where:

• d = diameter of equivalent cylinder
• a = radius of equivalent cylinder

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default inverted-L antenna is center-fed. The feed point coincides with the origin. The
origin is located on the X-Y plane.

 invertedL

2-95

Creation

Syntax
l = invertedL
l = invertedL(Name,Value)

Description

l = invertedL creates an inverted-L antenna mounted over a rectangular ground plane. By
default, the dimensions are chosen for an operating frequency of 1.7 GHz.

l = invertedL(Name,Value) creates an inverted-L antenna, with additional properties specified
by one or more name-value pair arguments. Name is the property name and Value is the
corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Height — Height of inverted element along z-axis
0.0140 (default) | scalar

Height of inverted element along z-axis, specified a scalar in meters.
Example: 'Height',3
Data Types: double

Width — Strip width
0.0020 (default) | scalar

Strip width, specified as a scalar in meters.

Note Strip width should be less than 'Height'/4 and greater than 'Height'/1001. [2]

Example: 'Width',0.05
Data Types: double

Length — Stub length along x-axis
0.0310 (default) | scalar

Stub length along x-axis, specified as a scalar in meters.
Example: 'Length',0.01

GroundPlaneLength — Ground plane length along x-axis
0.1000 (default) | scalar

Ground plane length along x-axis, specified a scalar in meters. Setting 'GroundPlaneLength' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',4

2 Objects

2-96

Data Types: double

GroundPlaneWidth — Ground plane width along y-axis
0.1000 (default) | scalar

Ground plane width along y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',2.5
Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector.
Example: 'FeedOffset',[2 1]
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: l.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

 invertedL

2-97

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Inverted-L Antenna

Create and view an inverted-L antenna that has 30mm length over a ground plane of dimensions
200mmx200mm.

il = invertedL('Length',30e-3, 'GroundPlaneLength',200e-3,...
 'GroundPlaneWidth',200e-3);
show(il)

2 Objects

2-98

Radiation Pattern of Inverted-L Antenna

Plot the radiation pattern of an inverted-L at a frequency of 1.7 GHz.

iL = invertedL('Length',30e-3, 'GroundPlaneLength',200e-3,...
 'GroundPlaneWidth',200e-3);
pattern(iL,1.7e9)

 invertedL

2-99

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
cylinder2strip | invertedF | patchMicrostrip | pifa

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-100

invertedFcoplanar
Create inverted-F antenna in same plane as rectangular ground plane

Description
The invertedFcoplanar object is a coplanar inverted-F antenna with a rectangular ground plane.
By default, the dimensions are chosen for an operating frequency of 1.7 GHz. Coplanar inverted-F
antennas are used in RFID tags and Internet of Things (IoT) applications. This antenna is an altered
version of the inverted-F antenna, providing a low-profile antenna with more design parameters and a
wider bandwidth.

Creation

Syntax
fco = invertedFcoplanar
fco = invertedFcoplanar(Name,Value)

 invertedFcoplanar

2-101

Description

fco = invertedFcoplanar creates a coplanar inverted-F antenna with the rectangular ground
plane. By default, the antenna dimensions are for an operating frequency of 1.7 GHz.

fco = invertedFcoplanar(Name,Value) creates a coplanar inverted-F antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
RadiatorArmWidth — Width of radiating arm
0.0040 (default) | scalar

Width of radiating arm, specified as the comma-separated pair consisting of
'RadiatorArmWidth'and a scalar in meters.
Example: 'RadiatorArmWidth',0.05
Data Types: double

FeederArmWidth — Width of feeding arm
1.0000e-03 (default) | scalar

Width of feeding arm, specified as a scalar in meters.
Example: 'FeederArmWidth',0.05
Data Types: double

ShortingArmWidth — Width of shorting arm
0.0040 (default) | scalar

Width of shorting arm, specified as a scalar in meters.
Example: 'ShortingArmWidth',1
Data Types: double

Height — Height of antenna
0.0100 (default) | scalar

Height of antenna from ground plane, specified as a scalar in meters.
Example: 'Height',0.0800
Data Types: double

LengthToOpenEnd — Length of stub from feed to open end
0.0350 (default) | scalar

Length of the stub from feed to the open-end, specified as a scalar in meters.
Example: 'LengthToOpenEnd',0.050
Data Types: double

2 Objects

2-102

LengthToShortEnd — Length of stub from feed to shorting end
0.0100 (default) | scalar

Length of the stub from feed to the shorting end, specified as a scalar in meters.
Example: 'LengthToShortEnd',0.035
Data Types: double

GroundPlaneLength — Length of ground plane
0.0800 (default) | scalar

Length of the ground plane, specified as a scalar in meters.
Example: 'GroundPlaneLength',0.035
Data Types: double

GroundPlaneWidth — Width of ground plane
0.0700 (default) | scalar

Width of the ground plane, specified as a scalar in meters.
Example: 'GroundPlaneWidth',0.035
Data Types: double

FeedOffset — Signed distance from center of ground plane
0 (default) | scalar

Signed distance from center of groundplane, specified as a scalar in meters.
Example: 'FeedOffset',0.06
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: fco.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

 invertedFcoplanar

2-103

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Analysis Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
show Display antenna or array structure; display shape as filled patch
vswr Voltage standing wave ratio of antenna

2 Objects

2-104

Examples

Coplanar Inverted-F Antenna

Create a default coplanar inverted-F antenna and view it.

fco = invertedFcoplanar

fco =
 invertedFcoplanar with properties:

 RadiatorArmWidth: 0.0040
 FeederArmWidth: 1.0000e-03
 ShortingArmWidth: 0.0040
 LengthToOpenEnd: 0.0350
 LengthToShortEnd: 0.0100
 Height: 0.0100
 GroundPlaneLength: 0.0800
 GroundPlaneWidth: 0.0700
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(fco)

 invertedFcoplanar

2-105

Radiation Pattern of Coplanar Inverted-F Antenna

Create a coplanar inverted-F antenna of height 0.014 m, ground plane length 0.1 m, and ground
plane width 0.1 m.

 fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Plot the radiation pattern of the above antenna.

 pattern(fco,1.30e9)

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

[2] Stutzman, W. L. and Gary A. Thiele. Antenna Theory and Design. 3rd Ed. River Street, NJ: John
Wiley & Sons, 2013.

See Also
invertedF | invertedL | invertedLcoplanar

2 Objects

2-106

Topics
“Rotate Antennas and Arrays”

Introduced in R2016b

 invertedFcoplanar

2-107

invertedLcoplanar
Create inverted-L antenna in same plane as rectangular ground plane

Description
The invertedLcoplanar object is a coplanar inverted-L antenna with the rectangular ground plane.
By default, the dimensions are chosen for an operating frequency of 1.6 GHz. This antenna is used in
applications that require low-profile narrow-bandwidth antennas, such as the transmitter for a garage
door opener and Internet of Things (IoT) applications.

Creation

Syntax
lco = invertedLcoplanar
lco = invertedLcoplanar(Name,Value)

Description

lco = invertedLcoplanar creates a coplanar inverted-L antenna with the rectangular ground
plane. By default, the antenna dimensions are for an operating frequency of 1.6 GHz.

2 Objects

2-108

lco = invertedLcoplanar(Name,Value) creates a coplanar inverted-L antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
RadiatorArmWidth — Width of radiating arm
0.0020 (default) | scalar

Width of radiating arm, specified as a scalar in meters.
Example: 'RadiatorArmWidth',0.05
Data Types: double

FeederArmWidth — Width of feeding arm
0.0020 (default) | scalar

Width of feeding arm, specified as scalar in meters.
Example: 'FeederArmWidth',0.05
Data Types: double

Height — Height of antenna
0.0100 (default) | scalar

Height of antenna from ground plane, specified as a scalar in meters.
Example: 'Height',0.0800
Data Types: double

Length — Length of stub from feed to open end
0.0350 (default) | scalar

Length of the stub from the feed to the open-end, specified as a scalar in meters.
Example: 'Length',0.0800
Data Types: double

GroundPlaneLength — Length of ground plane
0.0800 (default) | scalar in meters

Length of the ground plane, specified as a scalar in meters.
Example: 'GroundPlaneLength',0.035
Data Types: double

GroundPlaneWidth — Width of ground plane
0.0700 (default) | scalar

Width of the ground plane, specified as a scalar in meters.
Example: 'GroundPlaneWidth',0.035
Data Types: double

 invertedLcoplanar

2-109

FeedOffset — Signed distance from center of ground plane
0 (default) | scalar

Signed distance from center of groundplane, specified a scalar in meters.
Example: 'FeedOffset',0.06
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: lco.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

2 Objects

2-110

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
show Display antenna or array structure; display shape as filled patch
vswr Voltage standing wave ratio of antenna

Examples

Coplanar Inverted-L Antenna

Create a default coplanar inverted-L antenna and view it.

lco = invertedLcoplanar

lco =
 invertedLcoplanar with properties:

 RadiatorArmWidth: 0.0020
 FeederArmWidth: 0.0020
 Length: 0.0350
 Height: 0.0100
 GroundPlaneLength: 0.0800
 GroundPlaneWidth: 0.0700
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(lco)

 invertedLcoplanar

2-111

Impedance of Coplanar Inverted-L Antenna

Create a coplanar inverted-L antenna of length 0.050 m, height 0.014 m, ground plane length 0.1 m,
and ground plane width 0.1 m.

lco = invertedLcoplanar('Length',50e-3, 'Height',14e-3,...
 'GroundPlaneLength',100e-3,'GroundPlaneWidth',100e-3)

lco =
 invertedLcoplanar with properties:

 RadiatorArmWidth: 0.0020
 FeederArmWidth: 0.0020
 Length: 0.0500
 Height: 0.0140
 GroundPlaneLength: 0.1000
 GroundPlaneWidth: 0.1000
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

Plot the impedance over 1.1 GHz to 1.5 GHz in steps of 10 MHz.

2 Objects

2-112

impedance(lco,1.1e9:10e6:1.5e9);

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

[2] Stutzman, W. L. and Gary A. Thiele. Antenna Theory and Design. 3rd Ed. River Street, NJ: John
Wiley & Sons, 2013.

See Also
invertedF | invertedFcoplanar | invertedL

Topics
“Rotate Antennas and Arrays”

Introduced in R2016b

 invertedLcoplanar

2-113

loopCircular
Create circular loop antenna

Description
The loopCircular object is a planar circular loop antenna on the X-Y plane.

The thickness of the loop is related to the diameter of an equivalent cylinder loop by the equation

t = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical loop
• r is the radius of equivalent cylindrical loop

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default circular loop antenna is fed at the positive X-axis. The point of the X-axis is at the
midpoint of the inner and outer radii.

2 Objects

2-114

Creation

Syntax
lc = loopCircular
lc = loopCircular(Name,Value)

Description

lc = loopCircular creates a one wavelength circular loop antenna in the X-Y plane. By default,
the circumference is chosen for the operating frequency 75 MHz.

lc = loopCircular(Name,Value) creates a one wavelength circular loop antenna, with
additional properties specified by one, or more name-value pair arguments. Name is the property
name and Value is the corresponding value. You can specify several name-value pair arguments in
any order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default
values.

Properties
Radius — Outer radius of loop
0.6366 (default) | scalar

Outer radius of loop, specified as a scalar in meters.
Example: 'Radius',3
Data Types: double

Thickness — Thickness of loop
0.0200 (default) | scalar

Thickness of loop, specified as a scalar in meters.
Example: 'Thickness',2
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: lc.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90

 loopCircular

2-115

Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array

2 Objects

2-116

patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Circular Loop Antenna

Create and view a circular loop with 0.65 m radius and 0.01 m thickness.

c = loopCircular('Radius',0.64,'Thickness',0.03);
show(c)

Impedance of Circular Loop Antenna

Calculate the impedance of a circular loop antenna over a frequency range of 70MHz-90MHz.

c = loopCircular('Radius',0.64,'Thickness',0.03);
impedance(c,linspace(70e6,90e6,31))

 loopCircular

2-117

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
dipole | loopRectangular | slot

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-118

loopRectangular
Create rectangular loop antenna

Description
The loopRectangular object is a rectangular loop antenna on the X-Y plane.

The thickness of the loop is related to the diameter of an equivalent cylinder loop by the equation

t = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical loop
• r is the radius of equivalent cylindrical loop

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default circular loop antenna is fed at the positive Y-axis. The point of the Y-axis is the
midpoint of the inner and outer perimeter of the loop.

 loopRectangular

2-119

Creation

Syntax
lr = loopRectangular
lr = loopRectangular(Name,Value)

Description

lr = loopRectangular creates a rectangular loop antenna in the X-Y plane. By default, the
dimensions are chosen for the operating frequency 53 MHz.

lr = loopRectangular(Name,Value) creates a rectangular loop antenna, with additional
properties specified by one, or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retains their default values.

2 Objects

2-120

Properties
Length — Loop length along x-axis
2 (default) | scalar

Loop length along x-axis, specified as a scalar in meters.
Example: 'Length',3
Data Types: double

Width — Loop width along y-axis
1 (default) | scalar

Loop width along y-axis, specified as a scalar in meters.
Example: 'Width',2
Data Types: double

Thickness — Loop thickness
0.0100 (default) | scalar

Loop thickness, specified as a scalar in meters.
Example: 'Thickness',2
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: lr.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 loopRectangular

2-121

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Rectangular Loop Antenna

Create and view a rectangular loop antenna with 0.64m length, 0.64m width.

2 Objects

2-122

r = loopRectangular('Length',0.64,'Width',0.64)

r =
 loopRectangular with properties:

 Length: 0.6400
 Width: 0.6400
 Thickness: 0.0100
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(r)

Impedance of Rectangular Loop Antenna

Calculate the impedance of a rectangular loop antenna over a frequency range of 120MHz-140MHz.

r = loopRectangular('Length',0.64,'Width',0.64)

r =
 loopRectangular with properties:

 Length: 0.6400

 loopRectangular

2-123

 Width: 0.6400
 Thickness: 0.0100
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

impedance(r,linspace(120e6,140e6,31))

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
dipole | loopCircular | monopole

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-124

monopole
Create monopole antenna over rectangular ground plane

Description
The monopole object is a monopole antenna mounted over a rectangular ground plane.

The width of the monopole is related to the diameter of an equivalent cylindrical monopole by the
equation

w = 2d = 4r

, where:

• d is the diameter of equivalent cylindrical monopole
• r is the radius of equivalent cylindrical monopole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default monopole is center-fed. The feed point coincides with the origin. The origin is
located on the X-Y plane.

 monopole

2-125

Creation
Syntax
mpl = monopole
mpl = monopole(Name,Value)

Description

mpl = monopole creates a quarter-wavelength monopole antenna.

mpl = monopole(Name,Value) creates a quarter-wavelength monopole antenna with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Height — Height of vertical element along Z-axis
1 (default) | scalar

Height of vertical element along z-axis, specified as a scalar in meters. By default, the height is
chosen for an operating frequency of 75 MHz.
Example: 'Height',3
Data Types: double

Width — Monopole width
0.1000 (default) | scalar

Monopole width, specified as a scalar in meters.

Note Monopole width should be less than 'Height'/4 and greater than 'Height'/1001. [2]

Example: 'Width',0.05
Data Types: double

GroundPlaneLength — Ground plane length along X-axis
2 (default) | scalar

Ground plane length along x-axis, specified as a scalar in meters. Setting 'GroundPlaneLength' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',4
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
2 (default) | scalar

Ground plane width along y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth' to
Inf, uses the infinite ground plane technique for antenna analysis.

2 Objects

2-126

Example: 'GroundPlaneWidth',2.5
Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector.
Example: 'FeedOffset',[2 1]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: mpl.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]

 monopole

2-127

Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Monopole Antenna

Create and view a monopole of 1 m length, 0.01 m width and ground plane of dimensions 2.5mx2.5m.

m = monopole('GroundPlaneLength',2.5,'GroundPlaneWidth',2.5)

m =
 monopole with properties:

 Height: 1
 Width: 0.0100
 GroundPlaneLength: 2.5000
 GroundPlaneWidth: 2.5000
 FeedOffset: [0 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(m)

2 Objects

2-128

Radiation Pattern of Monopole Antenna

Radiation pattern of a monopole at a frequency of 75 MHz.

m = monopole('GroundPlaneLength',2.5, 'GroundPlaneWidth',2.5);
pattern (m,75e6)

 monopole

2-129

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
dipole | monopoleTopHat | patchMicrostrip

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-130

monopoleTopHat
Create capacitively loaded monopole antenna over rectangular ground plane

Description
The monopoleTopHat object is a top-hat monopole antenna mounted over a rectangular ground
plane. The monopole always connects with the center of top hat. The top hat builds up additional
capacitance to ground within the structure. This capacitance reduces the resonant frequency of the
antenna without increasing the size of the element.

The width of the monopole is related to the diameter of an equivalent cylindrical monopole by the
expression

w = 2d = 4r

where:

• d is the diameter of equivalent cylindrical monopole
• r is the radius of equivalent cylindrical monopole.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default top-hat monopole is center-fed. The feed point coincides with the origin. The origin
is located on the X-Y plane.

 monopoleTopHat

2-131

Creation

Syntax
mth = monopoleTopHat
mth = monopoleTopHat(Name,Value)

Description

mth = monopoleTopHat creates a capacitively loaded monopole antenna over a rectangular ground
plane.

mth = monopoleTopHat(Name,Value) creates a capacitively loaded monopole antenna with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1,..., NameN, ValueN. Properties not specified retain their default values.

2 Objects

2-132

Properties
Height — Monopole height
1 (default) | scalar

Monopole height, specified as a scalar in meters. By default, the height is chosen for an operating
frequency of 75 MHz.
Example: 'Height',3
Data Types: double

Width — Monopole width
0.1000 (default) | scalar

Monopole width, specified as a scalar in meters.

Note Monopole width should be less than 'Height'/4 and greater than 'Height'/1001. [2]

Example: 'Width',0.05
Data Types: double

GroundPlaneLength — Ground plane length along X-axis
2 (default) | scalar

Ground plane length along x-axis, specified as a scalar in meters. Setting 'GroundPlaneLength' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',4
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
2 (default) | scalar

Ground plane width along y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',2.5
Data Types: double

TopHatLength — Top hat length along X-axis
0.2500 (default) | scalar

Top hat length along x-axis, specified as a scalar in meters.
Example: 'TopHatLength',4
Data Types: double

TopHatWidth — Top hat width along Y-axis
0.2500 (default) | scalar

Top hat width along y-axis, specified as a scalar in meters.
Example: 'TopHatWidth',4

 monopoleTopHat

2-133

Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector.
Example: 'FeedOffset',[2 1]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: mth.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]

2 Objects

2-134

Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Top Hat Monopole.

Create and view a top hat monopole with 1 m length, 0.01 m width, groundplane dimensions 2mx2m
and top hat dimensions 0.25mx0.25m.

th = monopoleTopHat

th =
 monopoleTopHat with properties:

 Height: 1
 Width: 0.0100
 GroundPlaneLength: 2
 GroundPlaneWidth: 2
 TopHatLength: 0.2500
 TopHatWidth: 0.2500
 FeedOffset: [0 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 monopoleTopHat

2-135

show(th)

Calculate Impedance of Top Hat Monopole Antenna

Calculate and plot the impedance of a top hat monopole over a frequency range of 40 MHz-80 MHz.

th = monopoleTopHat;
impedance(th,linspace(40e6,80e6,41));

2 Objects

2-136

Compare Impedance of Top Hat Monopole Antenna and Monopole Antenna

Impedance comparison between a monopole of similar dimensions and the top hat monopole in
example 2.

m = monopole;
figure
impedance(m,linspace(40e6,80e6,41));

 monopoleTopHat

2-137

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
dipole | monopole | patchMicrostrip

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

2 Objects

2-138

patchMicrostrip
Create microstrip patch antenna

Description
The patchMicrostrip object is a microstrip patch antenna. The default patch is centered at the
origin. The feed point is along the length of the antenna.

Creation

Syntax
pm = patchMicrostrip
pm = patchMicrostrip(Name,Value)

Description

pm = patchMicrostrip creates a microstrip patch antenna.

pm = patchMicrostrip(Name,Value) creates a microstrip patch antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

 patchMicrostrip

2-139

Properties
Length — Patch length along X-axis
0.0750 (default) | scalar

Patch length, specified as a scalar in meters. By default, the length is measured along the x-axis.
Example: 'Length',50e-3
Data Types: double

Width — Patch width along the Y-axis
0.0375 (default) | scalar

Patch width, specified as a scalar in meters. By default, the width is measured along the y-axis.
Example: 'Width',60e-3
Data Types: double

Height — Height of substrate
0.0060 (default) | scalar

Height of substrate, specified as a scalar in meters.
Example: 'Height',37e-3
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric function handle

Type of dielectric material used as a substrate, specified as a dielectric material object handle. You
can choose any material from the DielectricCatalog or use your own dielectric material. For
more information, see dielectric. For more information on dielectric substrate meshing, see
“Meshing”.

Note The substrate dimensions must be lesser than the ground plane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); ant.Substrate = d

GroundPlaneLength — Ground plane length along x-axis
0.1500 (default) | scalar

Ground plane length, specified as a scalar in meters. By default, ground plane length is measured
along x-axis. Setting 'GroundPlaneLength' to Inf, uses the infinite ground plane technique for
antenna analysis.
Example: 'GroundPlaneLength',120e-3
Data Types: double

GroundPlaneWidth — Ground plane width along y-axis
0.0750 (default) | scalar

2 Objects

2-140

Ground plane width, specified as a scalar in meters. By default, ground plane width is measured
along y-axis. Setting 'GroundPlaneWidth' to Inf, uses the infinite ground plane technique for
antenna analysis.
Example: 'GroundPlaneWidth',120e-3
Data Types: double

PatchCenterOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector in meters. Use this property to adjust the location of the patch relative to the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[–0.0187 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector. Use this property to adjust the location of the feedpoint relative to ground plane and patch.
Example: 'FeedOffset',[0.01 0.01]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 patchMicrostrip

2-141

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Microstrip Patch Antenna

Create and view a microstrip patch with specified parameters.

2 Objects

2-142

pm = patchMicrostrip('Length',75e-3, 'Width',37e-3, ...
 'GroundPlaneLength',120e-3, 'GroundPlaneWidth',120e-3)

pm =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0370
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1200
 GroundPlaneWidth: 0.1200
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show (pm)

Radiation Pattern of Microstrip Patch Antenna

Create a microstrip patch antenna using 'FR4' as the dielectric substrate.

 patchMicrostrip

2-143

d = dielectric('FR4');
pm = patchMicrostrip('Length',75e-3,'Width',37e-3, ...
 'GroundPlaneLength',120e-3,'GroundPlaneWidth',120e-3, ...
 'Substrate',d)

pm =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0370
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1200
 GroundPlaneWidth: 0.1200
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(pm)

Plot the radiation pattern of the antenna at a frequency of 1.67 GHz.

figure
pattern(pm,1.67e9)

2 Objects

2-144

Impedance of Microstrip Patch Antenna

Create a microstrip patch antenna using 'FR4' as the dielectric substrate.

d = dielectric('FR4');
pm = patchMicrostrip('Substrate',d)

pm =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0375
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1500
 GroundPlaneWidth: 0.0750
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(pm)

 patchMicrostrip

2-145

Calculate and plot the impedance of the antenna over the specified frequency range.

impedance(pm,linspace(0.5e9,1e9,11));

2 Objects

2-146

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
pifa | vivaldi | yagiUda

Topics
“ISM Band Patch Microstrip Antennas and Mutually Coupled Patches”
“Rotate Antennas and Arrays”

Introduced in R2015a

 patchMicrostrip

2-147

planeWaveExcitation
Create plane wave excitation environment for antenna or array

Description
The planeWaveExcitation object creates an environment where a plane wave excites an antenna
or array. Plane wave excitation is a scattering solution that solves the receiving antenna problem. By
default, the antenna element is a dipole. The dipole is excited using a plane wave that travels along
the positive x-axis having a z-polarization.

Creation

Syntax
h = planeWaveExcitation
h = planeWaveExcitation(Name,Value)

Description

h = planeWaveExcitation creates an environment where a plane wave excites the antenna or
array. By default, the plane wave excites a dipole antenna.

h = planeWaveExcitation(Name,Value) returns a planeWaveExcitation environment, with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Element — Antenna or array element
dipole (default) | object handle

Antenna or array element, specified as an object handle.

Note For infinite array, support for unit cell analysis is for only transmit scenarios.

Example: 'Element',linearArray

Direction — Incidence of plane wave
[1 0 0] (default) | three-element real vector

Incidence of plane wave, specified as a three-element real vector.
Example: 'Direction',[0 0 1]
Data Types: double

2 Objects

2-148

Polarization — Polarization of incident electric field
[0 0 1] (default) | three-element complex vector

Polarization of incident electric field in x, y, and z components, specified as a three-element complex
vector in V/m The polarization vector gives the orientation and magnitude of the electric field.
Example: 'Polarization',[0 1 0]
Data Types: double

Object Functions
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
show Display antenna or array structure; display shape as filled patch

Examples

Default Plane Wave Excitation

Excite a dipole antenna using a plane wave and view it.

h = planeWaveExcitation;
show(h)

 planeWaveExcitation

2-149

The blue arrow shows the direction of propagation of the plane wave. By default, the direction is
along the x-axis. The pink arrow shows polarization of the plane wave. By default, the polarization is
perpendicular to the direction of propagation i.e. along the z-axis.

Feed Current of Antenna Excited By Plane Wave.

Excite a dipole antenna using plane wave. Calculate the feed current at 70 MHz.

h = planeWaveExcitation
cur = feedCurrent(h, 70e6)

h =

 planeWaveExcitation with properties:

 Element: [1×1 dipole]
 Direction: [1 0 0]
 Polarization: [0 0 1]

cur =

2 Objects

2-150

 0.0179 - 0.0040i

Current Distribution On Antenna

Excite a dipole antenna using a plane wave. The polarization of the wave is along the z-axis and the
direction of propagation is along the negative x-axis. View the antenna.

p = planeWaveExcitation('Element', dipole, 'Direction', [-1 0 0], 'Polarization', [0 0 1]);
show(p);

Plot the current distribution on the dipole antenna at 70 MHz.

current(p, 70e6);

 planeWaveExcitation

2-151

Antenna Excited By Plane Wave In Arbitrary Direction

Consider a dipole excited by a plane wave.

p = planeWaveExcitation;
p.Direction = [0 1 1];
show(p)

2 Objects

2-152

If you use the above option, any analysis of this antenna will error out as the polarization and
direction vector are not orthogonal to each other.

Use the cross-product function to find the appropriate polarization direction of such a wave.

p = planeWaveExcitation;
p.Polarization = cross(p.Direction, [0 1 1]);
show(p);

 planeWaveExcitation

2-153

Calculate the current distribution of the antenna.

current(p,75e6);

2 Objects

2-154

Plane Wave Excitation of Infinite Array

Excite an infinite array using a plane wave.

p = planeWaveExcitation('Element',infiniteArray)

p =
 planeWaveExcitation with properties:

 Element: [1x1 infiniteArray]
 Direction: [1 0 0]
 Polarization: [0 0 1]

show(p)

 planeWaveExcitation

2-155

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

See Also
dipole | linearArray

Introduced in R2017a

2 Objects

2-156

pifa
Create planar inverted-F antenna

Description
The pifa object is a planar inverted-F antenna. The default PIFA antenna is centered at the origin.
The feed point is along the length of the antenna.

Creation

Syntax
pf = pifa
pf = pifa(Name,Value)

Description

pf = pifa class to create a planar inverted-F antenna.

pf = pifa(Name,Value) class to create a planar inverted-F antenna, with additional properties
specified by one, or more name-value pair arguments. Name is the property name and Value is the
corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

 pifa

2-157

Properties
Length — PIFA antenna length
0.0300 (default) | scalar

PIFA antenna length, specified as a scalar in meters. By default, the length is measured along the x-
axis.
Example: 'Length',75e-3
Data Types: double

Width — PIFA antenna width
0.0200 (default) | scalar

PIFA antenna width, specified as a scalar in meters. By default, the width is measured along the y-
axis.
Example: 'Width',35e-3
Data Types: double

Height — Height of substrate
0.0100 (default) | scalar

Height of the substrate, specified as a scalar in meters.
Example: 'Height',37e-3
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | object

Type of dielectric material used as a substrate, specified as an object. For more information see,
dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); pf.Substrate = d

GroundPlaneLength — Ground plane length
0.0360 (default) | scalar

Ground plane length, specified as a scalar in meters. By default, ground plane length is measured
along the x-axis. Setting 'GroundPlaneLength' to Inf, uses the infinite ground plane technique for
antenna analysis.
Example: 'GroundPlaneLength',3
Data Types: double

GroundPlaneWidth — Ground plane width
0.0360 (default) | scalar

2 Objects

2-158

Ground plane width, specified as a scalar in meters. By default, ground plane width is measured
along the y-axis. Setting 'GroundPlaneWidth' to Inf, uses the infinite ground plane technique for
antenna analysis.
Example: 'GroundPlaneWidth',2.5
Data Types: double

PatchCenterOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from the center along length and width of the ground plane, specified as a two-
element vector in meters. Use this property to adjust the location of the patch relative to the ground
plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Data Types: double

ShortPinWidth — Shorting pin width of patch
0.0200 (default) | scalar

Shorting pin width of patch, specified as a scalar in meters. By default, the shorting pin width is
measured along the y-axis.
Example: 'ShortPinWidth',3
Data Types: double

FeedOffset — Signed distance of feedpoint from origin
[–0.0020 0] (default) | two-element vector

Signed distance from center along length and width of ground plane, specified as a two-element
vector. Use this property to adjust the location of the feedpoint relative to ground plane and patch.
Example: 'FeedOffset',[0.01 0.01]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: pf.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90

 pifa

2-159

Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array

2 Objects

2-160

sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Planar Inverted-F Antenna(PIFA) Antenna

Create and view a PIFA antenna with 30 mm length, 20 mm width over a 35 mm x 35 mm ground
plane, and feedpoint at (-2 mm,0,0).

pf = pifa

pf =
 pifa with properties:

 Length: 0.0300
 Width: 0.0200
 Height: 0.0100
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0360
 GroundPlaneWidth: 0.0360
 PatchCenterOffset: [0 0]
 ShortPinWidth: 0.0200
 FeedOffset: [-0.0020 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(pf)

 pifa

2-161

Radiation Pattern of PIFA Antenna

Plot the radiation pattern of a PIFA antenna at a frequency of 2.3 GHz.

pf = pifa('Length',30e-3, 'Width',20e-3, 'GroundPlaneLength',35e-3,...
 'GroundPlaneWidth',35e-3)

pf =
 pifa with properties:

 Length: 0.0300
 Width: 0.0200
 Height: 0.0100
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0350
 GroundPlaneWidth: 0.0350
 PatchCenterOffset: [0 0]
 ShortPinWidth: 0.0200
 FeedOffset: [-0.0020 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

pattern(pf,2.3e9);

2 Objects

2-162

Impedance of PIFA Antenna

Create a PIFA antenna using a dielectric substrate 'RO4725JXR'.

d = dielectric('RO4725JXR');
pf = pifa('Length',30e-3, 'Width',20e-3,'Height',0.0060, 'GroundPlaneLength',35e-3, ...
 'GroundPlaneWidth', 35e-3,'Substrate',d)
show(pf)

pf =

 pifa with properties:

 Length: 0.0300
 Width: 0.0200
 Height: 0.0060
 Substrate: [1×1 dielectric]
 GroundPlaneLength: 0.0350
 GroundPlaneWidth: 0.0350
 PatchCenterOffset: [0 0]
 ShortPinWidth: 0.0200
 FeedOffset: [-0.0020 0]
 Tilt: 0
 TiltAxis: [1 0 0]

 pifa

2-163

 Load: [1×1 lumpedElement]

Calculate the impedance of the antenna over the specified frequency range. GHz.

impedance(pf,linspace(2.2e9,2.5e9,31));

2 Objects

2-164

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
invertedF | invertedL | patchMicrostrip

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 pifa

2-165

reflector
Create reflector-backed antenna

Description
The reflector object is a reflector-backed antenna on the X-Y-Z plane. The default reflector antenna
uses a dipole as an exciter. The feed point is on the exciter.

Creation

Syntax
rf = reflector
rf = reflector(Name,Value)

Description

rf = reflector creates a reflector backed antenna located in the X-Y-Z plane. By default,
dimensions are chosen for an operating frequency of 1 GHz.

rf = reflector(Name,Value) creates a reflector backed antenna, with additional properties
specified by one or more name-value pair arguments. Name is the property name and Value is the

2 Objects

2-166

corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Exciter — Antenna type used as exciter
dipole (default) | object

Antenna type used as an exciter, specified as an object. Except reflector and cavity antenna elements,
you can use all the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',dipole

Substrate — Type of dielectric material
'Air' (default) | object

Type of dielectric material used as a substrate, specified as an object. For more information see,
dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); rf.Substrate = d

GroundPlaneLength — Reflector length along X-axis
0.2000 (default) | scalar

Reflector length along the x-axis, specified a scalar in meters. By default, ground plane length is
measured along the x-axis. Setting 'GroundPlaneLength' toInf, uses the infinite ground plane
technique for antenna analysis. You can also set the 'GroundPlaneLength' to zero.
Example: 'GroundPlaneLength',3
Data Types: double

GroundPlaneWidth — Reflector width along Y-axis
0.2000 (default) | scalar

Reflector width along the y-axis, specified as a scalar in meters. By default, ground plane width is
measured along the y-axis. Setting 'GroundPlaneWidth' toInf, uses the infinite ground plane
technique for antenna analysis. You can also set the 'GroundPlaneWidth' to zero.
Example: 'GroundPlaneWidth',2.5
Data Types: double

Spacing — Distance between reflector and exciter
0.0750 (default) | scalar

Distance between the reflector and the exciter, specified as a scalar in meters. By default, the exciter
is placed along the x-axis.
Example: 'Spacing',7.5e-2
Data Types: double

 reflector

2-167

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: rf.Load = lumpedElement('Impedance',75)

EnableProbeFeed — Create probe feed from backing structure to exciter
0 (default) | 1

Create probe feed from backing structure to exciter, specified as 0 or 1. By default, probe feed is not
enabled.
Example: 'EnableProbeFeed',1
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

2 Objects

2-168

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Reflector-Backed Dipole Antenna

Create a reflector backed dipole that has 30 cm length, 25 cm width and spaced 7.5 cm from the
dipole for operation at 1 GHz.

d = dipole('Length',0.15,'Width',0.015, 'Tilt',90,'TiltAxis',[0 1 0]);
rf = reflector('GroundPlaneLength',30e-2, 'GroundPlaneWidth',25e-2,...
 'Spacing',7.5e-2);
rf.Exciter = d

rf =
 reflector with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.3000
 GroundPlaneWidth: 0.2500
 Spacing: 0.0750
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(rf)

 reflector

2-169

Radiation Pattern of Reflector Backed Antenna

Create a reflector backed dipole antenna using a dielectric substrate 'FR4'.

d = dielectric('FR4');
di = dipole('Length',0.15,'Width',0.015, 'Tilt',90,'TiltAxis','Y');
rf = reflector('GroundPlaneLength',30e-2, 'GroundPlaneWidth',25e-2, ...
 'Spacing',7.5e-3,'Substrate',d);
rf.Exciter = di;
show(rf)

2 Objects

2-170

Plot the radiation pattern of the antenna at a frequency of 1 GHz.

figure
pattern(rf,1e9)

 reflector

2-171

Create Reflector-Backed Antenna Over Infinite Ground Plane

Create a reflector backed dipole that has infinite length, 25 cm width and spaced 7.5 cm from the
dipole for operation at 1 GHz.

d = dipole('Length',0.15,'Width',0.015, 'Tilt',90,'TiltAxis',[0 1 0]);
rf = reflector('GroundPlaneLength',inf, 'GroundPlaneWidth',25e-2,...
 'Spacing',7.5e-2);
rf.Exciter = d

rf =
 reflector with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 GroundPlaneLength: Inf
 GroundPlaneWidth: 0.2500
 Spacing: 0.0750
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(rf)

2 Objects

2-172

Antenna On Dielectric Substrate - Compare Gain Values

Compare the gain values of a dipole antenna in free space and dipole antenna on a substrate.

Design a dipole antenna at 1 GHz.

d = design(dipole,1e9);
l_by_w = d.Length/d.Width;
d.Tilt = 90;
d.TiltAxis = [0 1 0];

Plot the radiation pattern of the dipole in free space at 1GHz.

figure
pattern(d,1e9);

 reflector

2-173

Use FR4 as the dielectric substrate.

t = dielectric('FR4')

t =
 dielectric with properties:

 Name: 'FR4'
 EpsilonR: 4.8000
 LossTangent: 0.0260
 Thickness: 0.0060

For more materials see catalog

eps_r = t.EpsilonR;
lambda_0 = physconst('lightspeed')/1e9;
lambda_d = lambda_0/sqrt(eps_r);

Adjust the length of the dipole based on the wavelength.

d.Length = lambda_d/2;
d.Width = d.Length/l_by_w;

Design a reflector at 1 GHz with the dipole as the excitor and FR4 as the substrate.

rf = design(reflector,1e9);
rf = reflector('Exciter',d,'Spacing',7.5e-3,'Substrate',t);

2 Objects

2-174

rf.GroundPlaneLength = lambda_d;
rf.GroundPlaneWidth = lambda_d/4;
figure
show(rf)

Remove the groundplane for plotting the gain of the dipole on the substrate.

rf.GroundPlaneLength = 0;
show(rf)

 reflector

2-175

Plot the radiation pattern of the dipole on the substrate at 1 GHz.

figure
pattern(rf,1e9);

2 Objects

2-176

Compare the gain values.

• Gain of the dipole in free space = 2.11 dBi
• Gain of the dipole on substrate = 1.93 dBi

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
cavity | spiralArchimedean | spiralEquiangular

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 reflector

2-177

slot
Create rectangular slot antenna on ground plane

Description
The slot object is a rectangular slot antenna on a ground plane. The default slot has its first
resonance at 130 MHz.

Creation
Syntax
s = slot
s = slot(Name,Value)

Description

s = slot creates a rectangular slot antenna on a ground plane.

s = slot(Name,Value) creates a rectangular slot antenna, with additional properties specified by
one, or more name-value pair arguments. Name is the property name and Value is the corresponding

2 Objects

2-178

value. You can specify several name-value pair arguments in any order as Name1, Value1, ...,
NameN, ValueN. Properties not specified retain default values.

Properties
Length — Slot length
1 (default) | scalar

Slot length, specified as a scalar in meters.
Example: 'Length',2
Data Types: double

Width — Slot width
0.1000 (default) | scalar

Slot width, specified a scalar in meters.
Example: 'Width',0.02
Data Types: double

SlotCenter — Slot antenna center
[0 0 0] (default) | three-element vector in Cartesian coordinates

Slot antenna center, specified as a three-element vector in Cartesian coordinates.
Example: 'SlotCenter',[8 0 0]
Data Types: double

GroundPlaneLength — Ground plane length
1.5000 (default) | scalar

Ground plane length, specified as a scalar in meters. By default, the length is measured along the x-
axis.
Example: 'GroundPlaneLength',3
Data Types: double

GroundPlaneWidth — Ground plane width
1.5000 (default) | scalar

Ground plane width, specified as a scalar in meters. By default, the width is measured along the y-
axis.
Example: 'GroundPlaneWidth',4
Data Types: double

FeedOffset — Distance from center along x-axis
0 (default) | scalar

Distance from center along x-axis, specified as a scalar in meters. Offset from slot center is measured
along the length.
Example: 'FeedOffset',3

 slot

2-179

Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: s.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-180

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Slot Antenna

Create and view a slot antenna that has 1 m length and 100 mm width.

s = slot('Length',1,'Width',0.1);
show(s)

 slot

2-181

Impedance of Slot Antenna

Calculate and plot the impedance of a slot antenna over a frequency range of 100-150 MHz.

s = slot('Length',1,'Width',0.1);
impedance(s,linspace(100e6,150e6,51));

2 Objects

2-182

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
pifa | vivaldi | yagiUda

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 slot

2-183

spiralArchimedean
Create Archimedean spiral antenna

Description
The spiralArchimedean object creates a planar Archimedean spiral antenna on the X-Y plane. The
default Archimedean spiral is always center fed and has two arms. The field characteristics of this
antenna are frequency independent. A realizable spiral has finite limits on the feeding region and the
outermost point of any arm of the spiral. The spiral antenna exhibits a broadband behavior. The outer
radius imposes the low frequency limit and the inner radius imposes the high frequency limit. The
arm radius grows linearly as a function of the winding angle.

The equation of the Archimedean spiral is:

r = r0 + aϕ

where:

• r0 is the inner radius
• a is the growth rate
• ϕ is the winding angle of the spiral

Archimedean spiral antenna is a self-complimentary structure, where the spacing between the arms
and the width of the arms are equal. The default antenna is center fed. The feed point coincides with
the origin. The origin is in the X-Y plane.

2 Objects

2-184

Creation

Syntax
ant = spiralArchimedean
ant = spiralArchimedean(Name,Value)

Description

ant = spiralArchimedean creates a planar Archimedean spiral on the X-Y plane. By default, the
antenna operates over a broadband frequency range of 3–5 GHz.

ant = spiralArchimedean(Name,Value) sets properties using one or more name-value pairs.
For example, ant = spiralArchimedean('Turns',6.25) creates a Archimedean spiral of 6.25
turns.

Output Arguments

ant — MATLAB object
scalar spiralArchimedean object (default)

 spiralArchimedean

2-185

MATLAB object, returned as scalar spiralArchimedean object.

Properties
NumArms — Number of arms
2 (default) | scalar integer

Number of arms, specified as a scalar integer. You can also create a single arm Archimedean spiral by
specifying NumArms is equal to one.
Example: 'NumArms',1
Example: ant.NumArms = 1
Data Types: double

Turns — Number of turns of spiral antenna
1.5000 (default) | scalar

Number of turns of the spiral antenna, specified as a scalar.
Example: 'Turns',2
Example: ant.Turns = 2
Data Types: double

InnerRadius — Inner radius of spiral antenna
5.0000e-04 (default) | scalar

inner radius of the spiral antenna, specified as a scalar in meters.
Example: 'InnerRadius',1e-3
Example: ant.InnerRadius = 1e-3
Data Types: double

OuterRadius — Outer radius of spiral antenna
0.0398 (default) | scalar

Outer radius of the spiral antenna, specified as a scalar in meters.
Example: 'OuterRadius',1e-3
Example: ant.OuterRadius = 1e-3
Data Types: double

WindingDirection — Direction of spiral turns (windings)
'CW' | 'CCW'

Direction of the spiral turns (windings), specified as 'CW' or 'CCW'.
Example: 'WindingDirection','CW'
Example: ant.WindingDirection = CW
Data Types: char | string

2 Objects

2-186

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the spiral antenna feed, specified as a lumped element object handle. You
can add a load anywhere on the surface of the antenna. By default, it is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 spiralArchimedean

2-187

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Archimedean Spiral Antenna

Create and view a 2-turn Archimedean spiral antenna with a 1 mm starting radius and 40 mm outer
radius.

sa = spiralArchimedean('Turns',2, 'InnerRadius',1e-3, 'OuterRadius',40e-3);
show(sa)

2 Objects

2-188

Impedance of Archimedean Spiral Antenna

Calculate the impedance of an Archimedean spiral antenna over a frequency range of 1-5 GHz.

sa = spiralArchimedean('Turns',2, 'InnerRadius',1e-3, 'OuterRadius',40e-3);
impedance(sa, linspace(1e9,5e9,21));

 spiralArchimedean

2-189

Single-Arm Archimedean Spiral

Create and view a single-arm Archimedean spiral.

ant = spiralArchimedean;
ant.NumArms = 1

ant =
 spiralArchimedean with properties:

 NumArms: 1
 Turns: 1.5000
 InnerRadius: 5.0000e-04
 OuterRadius: 0.0398
 WindingDirection: 'CCW'
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

2 Objects

2-190

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Nakano, H., Oyanagi, H. and Yamauchi, J. “A Wideband Circularly Polarized Conical Beam From a
Two-Arm Spiral Antenna Excited in Phase”. IEEE Transactions on Antennas and Propagation.
Vol. 59, No. 10, Oct 2011, pp. 3518-3525.

[3] Volakis, John. Antenna Engineering Handbook, 4th Ed. McGraw-Hill

See Also
helix | spiralEquiangular | yagiUda

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 spiralArchimedean

2-191

spiralEquiangular
Create equiangular spiral antenna

Description
The spiralEquiangular object is a planar equiangular spiral antenna on the X-Y plane. The
equiangular spiral is always center fed and has two arms. The field characteristics of the antenna are
frequency independent. A realizable spiral has finite limits on the feeding region and the outermost
point of any arm of the spiral. This antenna exhibits a broadband behavior. The outer radius imposes
the low frequency limit and the inner radius imposes the high frequency limit. The arm radius grows
linearly as a function of the winding angle. As a result, outer arms of the spiral are shaped to
minimize reflections.

The equation of the equiangular spiral is:

r = r0eaϕ

, where:

• r0 is the starting radius
• a is the growth rate
• ϕ is the winding angle of the spiral

2 Objects

2-192

Creation
Syntax
se = spiralEquiangular
se = spiralEquiangular(Name,Value)

Description

se = spiralEquiangular creates a planar equiangular spiral in the X-Y plane. By default, the
antenna operates over a broadband frequency 4–10 GHz.

se = spiralEquiangular(Name,Value) creates an equiangular spiral antenna, with additional
properties specified by one, or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
GrowthRate — Equiangular spiral growth rate
0.3500 (default) | scalar

 spiralEquiangular

2-193

Equiangular spiral growth rate, specified as a scalar.
Example: 'GrowthRate',1.2
Data Types: double

InnerRadius — Inner radius of spiral
0.0020 (default) | scalar

Inner radius of spiral, specified as a scalar in meters.
Example: 'InnerRadius',1e-3
Data Types: double

OuterRadius — Outer radius of spiral
0.0189 (default) | scalar

Outer radius of spiral, specified as a scalar in meters.
Example: 'OuterRadius',1e-3
Data Types: double

WindingDirection — Direction of spiral turns (windings)
'CW' | 'CCW'

Direction of spiral turns (windings), specified as 'CW' or 'CCW'.
Example: 'WindingDirection','CW'
Data Types: char

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: se.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

2 Objects

2-194

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

 spiralEquiangular

2-195

Create and View Equiangular Spiral Antenna

Create and view an equiangular spiral antenna with 0.35 growth rate, 0.65 mm inner radius and 40
mm outer radius.

se = spiralEquiangular('GrowthRate',0.35, 'InnerRadius',0.65e-3, ...
 'OuterRadius',40e-3);
show(se)

Radiation Pattern of Equiangular Spiral Antenna

Plot the radiation pattern of equiangular spiral at a frequency of 4 GHz.

se = spiralEquiangular('GrowthRate',0.35, 'InnerRadius',0.65e-3, ...
 'OuterRadius',40e-3);
pattern(se,4e9);

2 Objects

2-196

References
[1] Dyson, J. The equiangular spiral antenna.” IRE Transactions on Antennas and Propagation. Vol.7,

Number 2, pp. 181, 187, April 1959.

[2] Nakano, H., K.Kikkawa, N.Kondo, Y.Iitsuka, J.Yamauchi. “Low-Profile Equiangular Spiral Antenna
Backed by an EBG Reflector.” IRE Transactions on Antennas and Propagation. Vol. 57, No. 25,
May 2009, pp. 1309–1318.

[3] McFadden, M., and Scott, W.R. “Analysis of the Equiangular Spiral Antenna on a Dielectric
Substrate.” IEEE Transactions on Antennas and Propagation. Vol. 55, No. 11, Nov. 2007, pp.
3163–3171.

[4] Violates, John Antenna Engineering Handbook, 4th Ed., McGraw-Hill.

See Also
cavity | spiralArchimedean | vivaldi

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 spiralEquiangular

2-197

vivaldi
Create Vivaldi notch antenna on ground plane with exponential or linear tapering

Description
The vivaldi object is a Vivaldi notch antenna on a ground plane.

Creation

Syntax
vi = vivaldi
vi = vivaldi(Name,Value)

2 Objects

2-198

Description

vi = vivaldi creates a Vivaldi notch antenna on a ground plane. By default, the antenna operates
at a frequency range of 1–2 GHz and is located in the X-Y plane.

vi = vivaldi(Name,Value) creates Vivaldi notch antenna, with additional properties specified by
one, or more name-value pair arguments. Name is the property name and Value is the corresponding
value. You can specify several name-value pair arguments in any order as Name1, Value1, ...,
NameN, ValueN. Properties you do not specify retain their default values.

Properties
TaperLength — Taper length
0.2430 (default) | scalar

Taper length of vivaldi, specified a scalar in meters.
Example: 'TaperLength',2e-3

ApertureWidth — Aperture width
0.1050 (default) | scalar

Aperture width, specified as a scalar in meters.
Example: 'ApertureWidth',3e-3

OpeningRate — Taper opening rate
25 (default) | scalar

Taper opening rate, specified a scalar. This property determines the rate at which the notch
transitions from the feedpoint to the aperture. When OpeningRate is 0, the notch has a linear profile
creating a linear tapered slot and for other values it has an exponential profile.
Example: 'OpeningRate',0.3
Data Types: double

SlotLineWidth — Slot line width
5.0000e-04 (default) | scalar

Slot line width, specified as a scalar in meters.
Example: 'SlotLineWidth',3
Data Types: double

CavityDiameter — Cavity termination diameter
0.0240 (default) | scalar

Cavity termination diameter, specified a scalar in meters.
Example: 'CavityDiameter',2
Data Types: double

CavityToTaperSpacing — Cavity to taper distance of transition
0.0230 (default) | scalar

 vivaldi

2-199

Cavity to taper distance of transition, specified as a scalar in meters. By default, this property is
measured along the x-axis.
Example: 'CavityToTaperSpacing',3
Data Types: double

GroundPlaneLength — Ground plane length
0.3000 (default) | scalar

Ground plane length, specified as a scalar in meters. By default, ground plane length is measured
along the x-axis.
Example: 'GroundPlaneLength',2
Data Types: double

GroundPlaneWidth — Ground plane width
0.1250 (default) | scalar

Ground plane width, specified a scalar in meters. By default, ground plane width is measured along
the y-axis.
Example: 'GroundPlaneWidth',4
Data Types: double

FeedOffset — Distance from feed along x-axis
0 (default) | scalar

Distance from feed along x-axis, specified a scalar in meters.
Example: 'FeedOffset',3
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: vi.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

2 Objects

2-200

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

 vivaldi

2-201

Examples

Create and View Vivaldi Antenna

Create and view the default Vivaldi antenna.

vi = vivaldi

vi =
 vivaldi with properties:

 TaperLength: 0.2430
 ApertureWidth: 0.1050
 OpeningRate: 25
 SlotLineWidth: 5.0000e-04
 CavityDiameter: 0.0240
 CavityToTaperSpacing: 0.0230
 GroundPlaneLength: 0.3000
 GroundPlaneWidth: 0.1250
 FeedOffset: -0.1045
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(vi);

2 Objects

2-202

Radiation Pattern of Vivaldi Antenna

Plot the radiation pattern of a vivaldi antenna for a frequency of 3.5 GHz.

vi = vivaldi;
pattern(vi,3.5e9);

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
slot | spiralArchimedean | yagiUda

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 vivaldi

2-203

waveguide
Create rectangular waveguide

Description
The waveguide object is an open-ended rectangular waveguide. The default rectangular waveguide
is the WR-90 and functions in the X-band. The X-band has a cutoff frequency of 6.5 GHz and ranges
from 8.2 GHz to 12.5 GHz.

Creation

Syntax
wg = waveguide
wg = waveguide(Name,Value)

2 Objects

2-204

Description

wg = waveguide creates an open-ended rectangular waveguide.

wg = waveguide(Name,Value) creates a rectangular waveguide with additional properties
specified by one, or more name-value pair arguments. Name is the property name and Value is the
corresponding value. You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Properties
FeedHeight — Height of feed
0.0060 (default) | scalar

Height of feed, specified as a scalar in meters. By default, the feed height is chosen for an operating
frequency of 12.5 GHz.
Example: 'FeedHeight',0.0050
Data Types: double

FeedWidth — Width of feed
6.0000e-05 (default) | scalar

Width of feed, specified as a scalar in meters.
Example: 'FeedWidth',5e-05
Data Types: double

Length — Rectangular waveguide length
0.0240 (default) | scalar in meters

Rectangular waveguide length, specified as a scalar in meters. By default, the waveguide length is 1λ,
where:

λ = c/ f

• c = speed of light, 299792458 m/s
• f = operating frequency of the waveguide

Example: 'Length',0.09
Data Types: double

Width — Rectangular waveguide width
0.0229 (default) | scalar in meters

Rectangular waveguide width, specified as a scalar in meters.
Example: 'Width',0.05
Data Types: double

Height — Rectangular waveguide height
0.0102 (default) | scalar

Rectangular waveguide height, specified as a scalar in meters.

 waveguide

2-205

Example: 'Height',0.0200
Data Types: double

FeedOffset — Signed distance of feedpoint from center of ground plane
[–0.0060 0] (default) | two-element vector

Signed distance of feedpoint from center of ground plane, specified as a two-element vector in
meters. By default, the feed is at an offset of λ/4 from the shortened end on the X-Y plane.
Example: 'FeedOffset',[–0.0070 0.01]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: wg.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]

2 Objects

2-206

Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Rectangular Waveguide

Create a rectangular waveguide using default dimensions. Display the waveguide.

wg = waveguide

wg =
 waveguide with properties:

 Length: 0.0240
 Width: 0.0229
 Height: 0.0102
 FeedWidth: 6.0000e-05
 FeedHeight: 0.0060
 FeedOffset: [-0.0060 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 waveguide

2-207

show(wg)

Radiation Pattern of WR-650 Rectangular Waveguide

Create a WR-650 rectangular waveguide and display it.

wg = waveguide('Length',0.254,'Width',0.1651,'Height',0.0855,...
 'FeedHeight',0.0635,'FeedWidth',0.00508,'FeedOffset',[0.0635 0]);
show(wg)

2 Objects

2-208

Plot the radiation pattern of this waveguide at 1.5 GHz.

figure
pattern(wg,1.5e9)

 waveguide

2-209

References
[1] Balanis, Constantine A.Antenna Theory. Analysis and Design. 3rd Ed. New York: John Wiley and

Sons, 2005.

See Also
horn

Topics
“Rotate Antennas and Arrays”

Introduced in R2016a

2 Objects

2-210

yagiUda
Create Yagi-Uda array antenna

Description
The yagiUda class creates a classic Yagi-Uda array comprised of an exciter, reflector, and N-
directors along the z-axis. The reflector and directors create a traveling wave structure that results in
a directional radiation pattern.

The exciter, reflector, and directors have equal widths and are related to the diameter of an
equivalent cylindrical structure by the equation

w = 2d = 4r

where:

• d is the diameter of equivalent cylinder
• r is the radius of equivalent cylinder

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. A typical Yagi-Uda antenna array uses folded dipole as an exciter, due to its high impedance.
The Yagi-Uda is center-fed and the feed point coincides with the origin. In place of a folded dipole,
you can also use a planar dipole as an exciter.

 yagiUda

2-211

Creation

Syntax
yu = yagiUda
yu = yagiUda(Name,Value)

Description

yu = yagiUda creates a half-wavelength Yagi-Uda array antenna along the Z-axis. The default Yagi-
Uda uses folded dipole as three directors, one reflector, and a folded dipole as an exciter. By default,
the dimensions are chosen for an operating frequency of 300 MHz.

yu = yagiUda(Name,Value) creates a half-wavelength Yagi-Uda array antenna, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain default values.

2 Objects

2-212

Properties
Exciter — Antenna type used as exciter
dipoleFolded (default) | object

Antenna Type used as exciter, specified as the comma-separated pair consisting of 'Exciter' and an
object.
Example: 'Exciter',dipole

NumDirectors — Total number of director elements
3 (default) | scalar

Total number of director elements, specified as a scalar.

Note Number of director elements should be less than or equal to 20.

Example: 'NumDirectors',13
Data Types: double

DirectorLength — Director length
0.4080 (default) | scalar | vector

Director length, specified as a scalar or vector in meters.
Example: 'DirectorLength',[0.4 0.5]
Data Types: double

DirectorSpacing — Spacing between directors
0.3400 (default) | scalar | vector

Spacing between directors, specified as a scalar or vector in meters.
Example: 'DirectorSpacing',[0.4 0.5]
Data Types: double

ReflectorLength — Reflector length
0.5000 (default) | scalar

Reflector length, specified as a scalar in meters.
Example: 'ReflectorLength',0.3
Data Types: double

ReflectorSpacing — Spacing between exciter and reflector
0.2500 (default) | scalar

Spacing between exciter and reflector, specified as a scalar in meters.
Example: 'ReflectorSpacing', 0.4
Data Types: double

 yagiUda

2-213

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: yu.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-214

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create and View Yagi-Uda Array Antenna

Create and view a Yagi-Uda array antenna with 13 directors.

y = yagiUda('NumDirectors',13);
show(y)

 yagiUda

2-215

Radiation Pattern of Yagi-Uda Array Antenna

Plot the radiation pattern of a Yagi-Uda array antenna at a frequency of 300 MHz.

y = yagiUda('NumDirectors',13);
pattern(y,300e6)

2 Objects

2-216

Calculate Cylinder to Strip Approximation

Calculate the width of the strip approximation to a cylinder of radius 20 mm.

w = cylinder2strip(20e-3)

w = 0.0800

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
cylinder2strip | dipole | dipoleFolded | slot

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 yagiUda

2-217

customAntennaGeometry
Create antenna represented by 2-D custom geometry

Description
The customAntennaGeometry object is an antenna represented by a 2-D custom geometry on the X-
Y plane. Using customAntennaGeometry, you can import a planar mesh, define the feed for this
mesh to create an antenna, analyze the antenna, and use it in finite or infinite arrays. The image
shown is a custom slot antenna.

Creation

Syntax
ca = customAntennaGeometry
ca = customAntennaGeometry(Name,Value)

Description

ca = customAntennaGeometry creates a 2-D antenna represented by a custom geometry, based on
the specified boundary.

2 Objects

2-218

ca = customAntennaGeometry(Name,Value) creates a 2-D planar antenna geometry, with
additional properties specified by one or more name-value pair arguments. Name is the property name
and Value is the corresponding value. You can specify several name-value pair arguments in any
order as Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Properties
Boundary — Boundary information in Cartesian coordinates
cell array

Boundary information in Cartesian coordinates, specified as a cell array in meters.
Data Types: double

Operation — Boolean operation performed on boundary list
'P1' (default) | character vector

Boolean operation performed on the boundary list, specified as a character vector.
Example: 'Operation','P1-P2'
Data Types: double

FeedLocation — Antenna feed location in Cartesian coordinates
[0 0 0] (default) | three-element vector

Antenna feed location in Cartesian coordinates, specified as a three-element vector. The three-
element vector is the X, Y, and Z coordinates respectively.
Example: 'FeedLocation', [0 0.2 0]
Data Types: double

FeedWidth — Width of feed section
0.0100 (default) | scalar

Width of feed section, specified as a scalar in meters.
Example: 'FeedWidth',0.05
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load', lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of antenna, specified as a scalar or vector with each element unit in degrees.
Example: 'Tilt',90
Example: 'Tilt',[90 90 0]

 customAntennaGeometry

2-219

Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays

2 Objects

2-220

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array

Examples

Custom Dipole Antenna

Create a custom dipole antenna and view it.

ca = customAntennaGeometry

ca =
 customAntennaGeometry with properties:

 Boundary: {[4x3 double]}
 Operation: 'P1'
 FeedLocation: [0 0 0]
 FeedWidth: 0.0200
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ca)

 customAntennaGeometry

2-221

Custom Slot Antenna

Create a custom slot antenna using three rectangles and a circle.

Make three rectangles of 0.5 m x 0.5 m, 0.02 m x 0.4 m and 0.03 m x 0.008 m.

pr = em.internal.makerectangle(0.5,0.5);
pr1 = em.internal.makerectangle(0.02,0.4);
pr2 = em.internal.makerectangle(0.03,0.008);

Make a circle of radius 0.05 m.

ph = em.internal.makecircle(0.05);

Translate the third rectangle to the X-Y plane using the coordinates [0 0.1 0].

pf = em.internal.translateshape(pr2,[0 0.1 0]);

Create a custom slot antenna element using the specified boundary shapes. Transpose pr, ph, pr1,
and pf to make sure the boundary inputs are column vector arrays.

c = customAntennaGeometry('Boundary',{pr',ph',pr1',pf'},...
 'Operation','P1-P2-P3+P4');
figure;
show(c);

2 Objects

2-222

Move the feed location to new coordinates.

c.FeedLocation = [0,0.1,0];
figure;
show(c);

 customAntennaGeometry

2-223

Analyze the impedance of the antenna from 300 MHz to 800 MHz.

figure;
impedance(c, linspace(300e6,800e6,51));

2 Objects

2-224

Analyze the current distribution of the antenna at 575 MHz.

figure;
current(c,575e6)

 customAntennaGeometry

2-225

Plot the radiation pattern of the antenna at 575 MHz.

figure;
pattern(c,575e6)

2 Objects

2-226

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

See Also
Topics
“Rotate Antennas and Arrays”

Introduced in R2016b

 customAntennaGeometry

2-227

customAntennaMesh
Create 2-D custom mesh antenna on X-Y plane

Description
The customAntennaMesh object creates an antenna represented by a 2-D custom mesh on the X-Y
plane. You can provide an arbitrary antenna mesh to the Antenna Toolbox and analyze this mesh as a
custom antenna for port and field characteristics.

Creation
Description

customantenna = customAntennaMesh(points,triangles) creates a 2-D antenna
represented by a custom mesh, based on the specified points and triangles.

Input Arguments

points — Points in custom mesh
2-by-N or 3-by-N integer matrix of Cartesian coordinates in meters

Points in a custom mesh, specified as a 2-by-N or 3-by-N integer matrix of Cartesian coordinates in
meters. N is the number of points. In case you specify a 3xN integer matrix, the Z-coordinate must be
zero or a constant value. This value sets the 'Points' property in the custom antenna mesh.
Example: [0 1 0 1;0 1 1 0]
Data Types: double

triangles — Triangles in mesh
4-by-M integer matrix

Triangles in the mesh, specified as a 4-by-M integer matrix. M is the number of triangles. The first
three rows are indices to the points matrix and represent the vertices of each triangle. The fourth row
is a domain number useful for identifying separate parts of an antenna. This value sets the
'Triangles' property in the custom antenna mesh.

2 Objects

2-228

Data Types: double

Properties
Points — Points in custom mesh
2-by-N or 3-by-N integer matrix of Cartesian coordinates

Points in a custom mesh, specified as a 2-by-N or 3-by-N integer matrix of Cartesian coordinates in
meters. N is the number of points.
Example: [0.1 0.2 0]
Data Types: double

Triangles — Triangles in mesh
4-by-M integer matrix

Triangles in the mesh, specified as a 4-by-M integer matrix. M is the number of triangles.
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]

 customAntennaMesh

2-229

Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
createFeed Create feed location for custom antenna
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Custom Mesh Antenna

Load a custom planar mesh. Create the antenna and antenna feed. View the custom planar mesh
antenna and calculate the impedance at 100 MHz.

load planarmesh.mat;
c = customAntennaMesh(p,t);
show(c)

2 Objects

2-230

createFeed(c,[0.07,0.01],[0.05,0.05]);
Z = impedance(c,100e6)

Z = 0.5091 + 57.2103i

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

See Also
cavity | reflector

Topics
“Rotate Antennas and Arrays”

Introduced in R2015b

 customAntennaMesh

2-231

pcbStack
Single-feed or multifeed PCB antenna

Description
The pcbStack object is a single-feed or multi-feed printed circuit board (PCB) antenna. The
pcbStack object can be used

• To create single-layer, multilayer metal, or metal-dielectric substrate antennas
• To create an arbitrary number of feeds and vias in an antenna
• To create a PCB antenna with Antenna Toolbox antenna catalog elements
• To convert antenna array elements to PCB stack

Note To generate a Gerber file, a substrate layer is required. Use the Substrate property to create
this layer in the PCB antenna. For more information, see “Stack Conversion” on page 2-241

Creation

Syntax
pcbant = pcbStack
pcbant = pcbStack(Name,Value)
pcbant = pcbStack(ant)

Description

pcbant = pcbStack creates an air-filled single-feed PCB with two metal layers.

pcbant = pcbStack(Name,Value) sets “Properties” on page 2-232 using name-value pairs. For
example, pcbStack('FeedDiameter', 2.000e-04) creates a PCB antenna with a feed diameter
of 2.000e-04 meters. You can specify multiple name-value pairs. Enclose each property name in
quotes creates a PCB antenna, with additional properties specified by one or more name-value pair
arguments. Properties not specified retain their default values.

pcbant = pcbStack(ant) converts any 2-D or 2.5-D antenna from the antenna catalog into a PCB
antenna for further modeling and analysis. You can also use antenna array objects from the antenna
array catalog elements them convert it into PCB antennas.

Properties
Name — Name of PCB antenna
'MyPCB' (default) | character vector

Name of PCB antenna, specified a character vector.
Example: 'Name','PCBPatch'

2 Objects

2-232

Data Types: char | string

Revision — Revision details of PCB antenna design
'1.0' (default) | character vector

Revision details of PCB antenna design, specified as a character vector.
Example: 'Revision','2.0'
Data Types: char | string

BoardShape — Shape of PC board
antenna.Rectangle (default) | object

Shape of PC board, specified as an object. The shape can be a rectangle or a polygon.
Example: 'BoardShape',antenna.Polygon

BoardThickness — Thickness of PC board
0.0100 (default) | positive scalar

Thickness of PC board, specified as a positive scalar.
Example: 'BoardThickness',0.02000
Data Types: double

Layers — Metal and dielectric layers
{[1×1 antenna.Rectangle] [1×1 antenna.Rectangle]} (default) | cell array of metal layer
shapes and dielectric

Metal and dielectric layers, specified a cell array of metal layer shapes and dielectric. You can specify
one metal shape or one dielectric per layer starting with the top layer and proceeding down.
Data Types: cell

FeedLocations — Feed locations for antenna in Cartesian coordinates
[-0.0187 0 1 2] (default) | N -by-3 or N-by-4 array

Feed locations for PCB antenna in Cartesian coordinates, specified as N -by-3 or N-by-4 array. You can
place feed inside the board or at the edge of the board. The arrays translate to the following:

• N -by-3 – [x, y, Layer]
• N-by-4 – [x, y, SigLayer, GndLayer]

Example: 'FeedLocations',[-0.0187 0 1 2]
Data Types: double

FeedDiameter — Center pin diameter of feed connector
1.0000e-03 (default) | positive scalar in meters

Center pin diameter of feed connector, specified as a positive scalar in meters.
Example: 'FeedDiameter',2.000e-04
Data Types: double

ViaLocations — Electrical short locations for antenna in Cartesian coordinates
[0 0 0] (default) | real vector of sizeM-by-4 array

 pcbStack

2-233

Electrical short locations for antenna in Cartesian coordinates, specified as a real vector of size M-
by-4 array. The arrays translate to the following:

• M-by-4 – [x, y, SigLayer, GndLayer]

Example: 'ViaLocations',[0 -0.025 1 2]
Data Types: double

ViaDiameter — Electrical shorting pin diameter between metal layers
positive scalar in meters

Electrical shorting pin diameter between metal layers, specified a positive scalar in meters.
Example: 'ViaDiameter',1.0e-3
Data Types: double

FeedVoltage — Magnitude voltage applied at the feeds
1 (default) | positive scalar in volts

Magnitude voltage applied at the feeds, specified as a positive scalar in volts.
Example: 'FeedVoltage',2
Data Types: double

FeedViaModel — Model for approximating feed and via
'strip' (default) | 'square' | 'hexagon' | 'octagon'

Model for approximating feed and via, specified as one of the following:

• 'strip' – A rectangular strip approximation to the feed or via cylinder. This approximation is the
simplest and results in a small mesh.

• 'square' – A 4-sided polyhedron approximation to the feed or via cylinder.
• 'hexagon' – A 6-sided polyhedron approximation to the feed or via cylinder.
• 'octagon' – A 8-sided polyhedron approximation to the feed or via cylinder.

Example: 'FeedViaModel','octagon'
Data Types: char | string

FeedPhase — Excitation phase at each feed
0 (default) | real vector in degrees

Excitation phase at each feed, specified as a real vector in degrees.
Example: 'FeedPhase',2
Data Types: double

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.

2 Objects

2-234

Example: pcbant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays

 pcbStack

2-235

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna
plot Plot boundary of shape
layout Display array or PCB stack layout

Examples

End Loaded Planar Dipole

Setup parameters.

vp = physconst('lightspeed');
f = 850e6;
lambda = vp./f;

Build a planar dipole with capacitive loading at the ends.

L = 0.15;
W = 1.5*L;
stripL = L;
gapx = .015;
gapy = .01;
r1 = antenna.Rectangle('Center',[0,0],'Length',L,'Width',W,'Center',[lambda*0.35,0]);
r2 = antenna.Rectangle('Center',[0,0],'Length',L,'Width',W,'Center',[-lambda*0.35,0]);
r3 = antenna.Rectangle('Length',0.5*lambda,'Width',0.02*lambda,'NumPoints',2);
s = r1 + r2 + r3;
figure
show(s)

2 Objects

2-236

Assign the radiator shape to pcbStack and make the changes to the board shape and feed diameter
properties.

boardShape = antenna.Rectangle('Length',0.6,'Width',0.3);
p = pcbStack;
p.BoardShape = boardShape;
p.Layers = {s};
p.FeedDiameter = .02*lambda/2;
p.FeedLocations = [0 0 1];
figure
show(p)

 pcbStack

2-237

Analyze the impedance of the antenna. Effect of the end-loading should result in the series resonance
to be pushed lower in the band.

figure
impedance(p,linspace(200e6,1e9,51))

2 Objects

2-238

PCB Stack of Dielectric Antenna

Create a pcb stack antenna with 2 mm dielectric thickness at the radiator and air below it. Display
the structure.

p = pcbStack;
d1 = dielectric('FR4');
d1.Thickness = 2e-3;
d2 = dielectric('Air');
d2.Thickness = 8e-3;
p.Layers = {p.Layers{1},d1,d2,p.Layers{2}};
p.FeedLocations(3:4) = [1 4];
show(p)

 pcbStack

2-239

Directivity Pattern of PCB Stack Antenna

Create a PCB stack antenna from reflector backed bowtie.

b = design(bowtieRounded,1e9);
b.Tilt = 90

b =
 bowtieRounded with properties:

 Length: 0.0959
 FlareAngle: 90
 Tilt: 90
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

b.TiltAxis = [0 1 0];
r = reflector('Exciter',b);
p = pcbStack(r);

Plot the directivity pattern of the antenna at 1 GHz.

pattern(p,1e9);

2 Objects

2-240

PCB Antenna From Antenna Library Elements

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna to create a pcbStack object.

p = pcbStack(fco);

Stack Conversion

Create a circular microstrip patch.

p = patchMicrostripCircular;
d = dielectric;
d.EpsilonR = 4.4;
p.Radius = .0256;
p.Height = 1.6e-3;
p.Substrate = d;
p.GroundPlaneLength = 3*.0256;

 pcbStack

2-241

p.GroundPlaneWidth = 3*.0256;
p.FeedOffset = [.0116 0];

Create a PCB circular microstrip patch using pcbStack.

pb = pcbStack(p);
pb.FeedDiameter = 1.27e-3;
pb.ViaLocations = [0 pb.FeedLocations(1)/1.1 1 3];
pb.ViaDiameter = pb.FeedDiameter;
figure
show(pb)

C = SMA_Jack_Cinch;
O = PCBServices.MayhewWriter;
O.DefaultViaDiam = pb.ViaDiameter;
O.Filename = 'Microstrip circular patch-9a';
Am = PCBWriter(pb,O,C);
gerberWrite(Am)

Images using Mayhew Labs 3-D Viewer.

2 Objects

2-242

PCB Antenna from Antenna Array Library Elements

Create a coplanar inverted-F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Create a linear array with inverted-F antenna as its elements.

la = linearArray;
la.Element = fco;
la.NumElements = 4;

Use this antenna array to create the PCB antenna.

p = pcbStack(la);

PCB Stack from Linear Dipole Array and Dipole Antenna Element

Create a dipole antenna object and linearArray antenna array object. In the linearArray
antenna object, leave the Element property set to its default value of dipole. Set the
ElementSpacing property to 4."

d1 = dipole;
d2 = linearArray('ElementSpacing', 4);

To set the Z-coordinate of pcbStack antenna object to zero, rotate the dipole and linear dipole array
around 90 degrees using the Tilt property. Then set the TiltAxis property to [0 -1 0] for dipole
and linear dipole array antennas.

d1.Tilt = 90;
d2.Element.Tilt = 90;
d1.TiltAxis = [0 -1 0];
d2.Element.TiltAxis = [0 -1 0];

 pcbStack

2-243

Create and view PCB stack antenna created using the dipole antenna object.

p1 = pcbStack(d1);
show(p1)

Create and view PCB stack antenna using the linearArray antenna array object.

p2 = pcbStack(d2);
show(p2)

2 Objects

2-244

Circular Microstrip Patch Antenna on Polygon Shaped Board

Create a circular microstrip patch antenna.

ant = design(patchMicrostripCircular,3e9);
ant.Substrate = dielectric('FR4');
show(ant)

 pcbStack

2-245

c = antenna.Circle;
show(c)

2 Objects

2-246

c.NumPoints = 6;
c.Radius = 3*ant.Radius;
figure
show(c)

 pcbStack

2-247

Create the PCB stack using the vertices derived from the circle shape.

v = getShapeVertices(c);
cp = antenna.Polygon('Vertices' ,v);
pb = pcbStack(ant);
pb.Layers{3} = cp;
pb.BoardShape = cp;
show(pb)
axis equal

2 Objects

2-248

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

[2] Stutzman, W. L. and Gary A. Thiele. Antenna Theory and Design. 3rd Ed. River Street, NJ: John
Wiley & Sons, 2013.

See Also
antenna.Circle | antenna.Polygon | antenna.Rectangle | customAntennaMesh |
customArrayMesh

Topics
“Design Variations On Microstrip Patch Antenna Using PCB Stack”
“Rotate Antennas and Arrays”

Introduced in R2017a

 pcbStack

2-249

cavityCircular
Create circular cavity-backed antenna

Description
Use the circularCavity object to create a circular cavity-backed antenna. By default, the exciter
used is a dipole. The dimensions are chosen for an operating frequency of 1 GHz.

.

Creation
Syntax
circularcavity = cavityCircular
circularcavity = cavityCircular(Name,Value)

Description

circularcavity = cavityCircular creates a circular cavity-backed antenna.

circularcavity = cavityCircular(Name,Value) sets properties using one or more name-
value pairs. For example, circularcavity = cavityCircular('Radius',0.2) creates a
circular cavity of radius 0.2 m. Enclose each property name in quotes.

2 Objects

2-250

Properties
Exciter — Antenna type used as exciter
dipole (default) | object

Antenna type used as an exciter, specified as an object. Except for reflector and cavity antenna
elements, you can use any of the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',monopole
Example: circularcavity.Exciter = monopole
Data Types: char | string

Radius — Cavity radius
0.1000 (default) | scalar

Radius of cavity, specified as a scalar in meters.
Example: 'Radius',0.2
Example: circularcavity.Radius = 0.2
Data Types: double

Height — Cavity height along z-axis
0.0750 (default) | scalar

Cavity height along z-axis, specified as a scalar in meters.
Example: 'Height',0.001
Example: circularcavity.Height = 0.001
Data Types: double

Spacing — Distance between exciter and base of cavity
0.0750 (default) | scalar

Distance between the exciter and the base of the cavity, specified a scalar in meters.
Example: 'Spacing',7.5e-2
Example: circularcavity.Spacing = 7.5e-2
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | object

Type of dielectric material used as a substrate, specified as a object. For more information see,
dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); circularcavity.Substrate = d

 cavityCircular

2-251

EnableProbeFeed — Create probe feed from backing structure to exciter
0 (default) | 1

Create probe feed from backing structure to exciter, specified as 0 or 1 or a positive scalar. By
default, probe feed is not enabled.
Example: 'EnableProbeFeed',1
Example: circularcavity.EnableProbeFeed = 1
Data Types: double | logical

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: circularcavity.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]

2 Objects

2-252

Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Circular Cavity-Backed Antenna

Create and view a default circular cavity-backed antenna.

a = cavityCircular

a =
 cavityCircular with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 Radius: 0.1000
 Height: 0.0750
 Spacing: 0.0750
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(a)

 cavityCircular

2-253

Circular Cavity-Backed Equiangular Spiral

Create and view an equiangular spiral backed by a circular cavity. The cavity dimensions are:

Radius = 0.02 m

Height = 0.01 m

Spacing = 0.01 m

 ant = cavityCircular('Exciter',spiralEquiangular,'Radius',0.02, ...
 'Height',0.01,'Spacing', 0.01);
 show(ant)

2 Objects

2-254

See Also
cavity | reflector | reflectorCircular

Introduced in R2017b

 cavityCircular

2-255

cloverleaf
Create three-petal cloverleaf antenna

Description
Use the cloverleaf object to create a three-petal cloverleaf antenna. The default cloverleaf has 3
petals and operates at around 5.8 GHz. It has a wideband circular polarization and an omnidirectional
antenna.

Creation

Syntax
cl = cloverleaf

2 Objects

2-256

cl = cloverleaf(Name,Value)

Description

cl = cloverleaf creates a three-petal cloverleaf antenna.

cl = cloverleaf(Name,Value) sets properties using one or more name-value pairs. For example,
cl = cloverleaf('NumPetals',4) creates a five petal cloverleaf antenna. Enclose each property
name in quotes.

Properties
NumPetals — Number of petals
3 (default) | scalar

Number of petals, specified as a scalar.
Example: 'NumPetals',4
Example: cl.NumPetals = 4
Data Types: double

PetalLength — Total length of leaf
0.0515 (default) | scalar

Total length of leaf, specified as a scalar in meters.
Example: 'PetalLength',0.0025
Example: cl.PetalLength = 0.0025
Data Types: double

PetalWidth — Leaf strip width
8.0000e-04 (default) | scalar

Leaf strip width, specified as a scalar in meters.
Example: 'PetalWidth',0.001
Example: cl.PetalWidth = 0.001
Data Types: double

FlareAngle — Leaf flare angle
105 (default) | scalar

Leaf flare angle, specified as a scalar in degrees.
Example: 'FlareAngle',100
Example: cl.FlareAngle = 100
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

 cloverleaf

2-257

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, it is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: cl.Load = lumpedElement('Impedance',75)
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-258

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Clover Leaf Antenna

Create and view a default cloverleaf antenna.

cl = cloverleaf

cl =
 cloverleaf with properties:

 NumPetals: 3
 PetalLength: 0.0515
 PetalWidth: 8.0000e-04
 FlareAngle: 105
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(cl)

 cloverleaf

2-259

Axial Ratio of Cloverleaf Antenna

Create a cloverleaf antenna.

cl = cloverleaf;
show(cl);

2 Objects

2-260

Plot the axial ratio of the antenna from 5 GHz to 6 GHz.

freq = linspace(5e9,6e9,101);
axialRatio(cl,freq,0,0);

 cloverleaf

2-261

The axial ratio plot shows that the antenna supports circular polarization over the entire frequency
range.

See Also
dipole | spiralArchimedean

Introduced in R2017b

2 Objects

2-262

patchMicrostripCircular
Create probe-fed circular microstrip patch antenna

Description
Use the patchMicrostripCircular object to create a probe-fed circular microstrip patch antenna.
By default, the patch is centered at the origin with feed point along the radius and the groundplane
on the X-Y plane at z = 0.

Circular microstrip antennas are used as low-profile antennas in airborne and spacecraft
applications. These antennas also find use in portable wireless applications because they are
lightweight, low cost, and easily manufacturable.

 patchMicrostripCircular

2-263

Creation

Syntax
circularpatch = patchMicrostripCircular
circularpatch = patchMicrostripCircular(Name,Value)

Description

circularpatch = patchMicrostripCircular creates a probe-fed circular microstrip patch
antenna.

circularpatch = patchMicrostripCircular(Name,Value) sets properties using one or more
name-value pairs. For example, circularpatch = patchMicrostripCircular('Radius',0.2)
creates a circular patch of radius 0.2 m. Enclose each property name in quotes.

Properties
Radius — Patch radius
0.0798 (default) | scalar

Patch radius, specified as a scalar in meters. The default radius is for an operating frequency of 1
GHz.
Example: 'Radius',0.2
Example: circularpatch.Radius = 0.2
Data Types: double

Height — Height of patch
0.0060 (default) | scalar

Height of patch above the ground plane along the Z-axis, specified as a scalar in meters.
Example: 'Height',0.001
Example: circularpatch.Height = 0.001
Data Types: double

GroundPlaneLength — Ground plane length
0.3000 (default) | scalar

Ground plane length along the X-axis, specified as a scalar in meters. Setting
'GroundPlaneLength' to Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',120e-3
Example: circularpatch.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width
0.3000 (default) | scalar

2 Objects

2-264

Ground plane width along the Y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth'
to Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',120e-3
Example: circularpatch.GroundPlaneWidth = 120e-3
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric function handle

Type of dielectric material used as a substrate, specified as a dielectric material object handle. You
can choose any material from the DielectricCatalog or use your own dielectric material. For
more information, see dielectric. For more information on dielectric substrate meshing, see
“Meshing”.

Note The substrate dimensions must be lesser than the ground plane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); ant.Substrate = d

PatchCenterOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element real vector

Signed distance from center along length and width of ground plane, specified as a two-element real
vector with each element unit in meters. Use this property to adjust the location of the patch relative
to the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: circularpatch.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance from center along length and width of ground plane
[–0.0525 0] (default) | two-element real vector

Signed distance from center along length and width of ground plane, specified as a two-element real
vector with each element unit in meters. Use this property to adjust the location of the feedpoint
relative to the ground plane and patch.
Example: 'FeedOffset',[0.01 0.01]
Example: circularpatch.FeedOffset = [0.01 0.01]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.

 patchMicrostripCircular

2-265

Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays

2 Objects

2-266

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Circular Microstrip Patch

Create and view a default circular microstrip patch.

cp = patchMicrostripCircular

cp =
 patchMicrostripCircular with properties:

 Radius: 0.0798
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.3000
 GroundPlaneWidth: 0.3000
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0525 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(cp)

 patchMicrostripCircular

2-267

Radiation Pattern and Impedance of Circular Microstrip Patch

Create a circular patch antenna using given values. Display the antenna.

cp = patchMicrostripCircular('Radius',0.0798,'Height',6e-3,...
 'GroundPlaneLength',0.3,'GroundPlaneWidth',0.3,...
 'FeedOffset',[-0.0525 0]);

show(cp)

2 Objects

2-268

Plot the pattern of the patch antenna at 1 GHz.

pattern(cp,1e9);

 patchMicrostripCircular

2-269

Calculate the impedance of the antenna over a frequency span of 0.5 GHz to 1.5 GHz.

f = linspace(0.5e9,1.5e9,61);
impedance(cp,f);

2 Objects

2-270

See Also
patchMicrostrip | patchMicrostripInsetfed

Topics
“ISM Band Patch Microstrip Antennas and Mutually Coupled Patches”

Introduced in R2017b

 patchMicrostripCircular

2-271

patchMicrostripInsetfed
Create inset-fed microstrip patch antenna

Description
Use the patchMicrostripInsetfed object to create an inset-fed microstrip patch antenna. The
default patch is centered at the origin.

2 Objects

2-272

Creation

Syntax
insetpatch = patchMicrostripInsetfed
insetpatch = patchMicrostripInsetfed(Name,Value)

Description

insetpatch = patchMicrostripInsetfed creates an inset-fed microstrip patch antenna
centered at the origin.

insetpatch = patchMicrostripInsetfed(Name,Value) sets properties using one or more
name-value pair. For example, insetpatch = patchMicrostripInsetfed('Length',0.2)
creates an inset-fed patch of length 0.2 m. Enclose each property name in quotes.

Properties
Length — Patch length along X-axis
0.0300 (default) | scalar

Patch length along X-axis, specified as a scalar in meters. The default length is for an operating
frequency of 4.5 GHz.
Example: 'Length',0.2
Example: insetpatch.Length = 0.2
Data Types: double

Width — Patch width along Y-axis
0.0290 (default) | scalar

Patch width along Y-axis, specified as a scalar in meters.
Example: 'Width',0.1
Example: insetpatch.Width = 0.1
Data Types: double

Height — Patch height along Z-axis
0.0013 (default) | scalar

Patch height along Z-axis, specified as a scalar in meters.
Example: 'Height',0.001
Example: insetpatch.Height = 0.001
Data Types: double

GroundPlaneLength — Ground plane length along X-axis
0.0600 (default) | scalar

Ground plane length along X-axis, specified as a scalar in meters. Setting 'GroundPlaneLength' to
Inf, uses the infinite ground plane technique for antenna analysis.

 patchMicrostripInsetfed

2-273

Example: 'GroundPlaneLength',120e-3
Example: insetpatch.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
0.0600 (default) | scalar

Ground plane width along Y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth' to
Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',120e-3
Example: insetpatch.GroundPlaneWidth = 120e-3
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric material object handle

Type of dielectric material used as a substrate, specified as a dielectric material object handle. For
more information see, dielectric. For more information on dielectric substrate meshing, see
“Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); insetpatch.Substrate = d

PatchCenterOffset — Signed distance of patch from origin
[0 0] (default) | two-element real vector

Signed distance of patch from origin, specified as a two-element real vector with each element unit in
meters. Use this property to adjust the location of the patch relative to the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: insetpatch.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance of feed from origin
[–0.0300 0] (default) | two-element real vector

Signed distance of feed from origin, specified as a two-element real vector with each element unit in
meters. Use this property to adjust the location of the feedpoint relative to the ground plane and
patch.
Example: 'FeedOffset',[0.01 0.01]
Example: insetpatch.FeedOffset = [0.01 0.01]
Data Types: double

StripLineWidth — Strip line width along Y-axis
1.0000e-03 (default) | scalar

2 Objects

2-274

Strip line width along Y-axis, specified as a scalar in meters.
Example: 'StripLineWidth',0.1
Example: insetpatch.StripLineWidth = 0.1
Data Types: double

NotchLength — Notch length along X-axis
0.0080 (default) | scalar

Notch length along X-axis, specified as a scalar in meters.
Example: 'NotchLength',0.2
Example: insetpatch.NotchLength = 0.2
Data Types: double

NotchWidth — Notch width along Y-axis
0.0030 (default) | scalar

Notch width along Y-axis, specified as a scalar in meters.
Example: 'NotchWidth',0.1
Example: insetpatch.NotchWidth = 0.1
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: insetpatch.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 patchMicrostripInsetfed

2-275

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Inset-Fed Microstrip Patch

Create and view a default inset-fed microstrip patch.

2 Objects

2-276

insetpatch = patchMicrostripInsetfed

insetpatch =
 patchMicrostripInsetfed with properties:

 Length: 0.0300
 Width: 0.0290
 Height: 0.0013
 Substrate: [1x1 dielectric]
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0300 0]
 StripLineWidth: 1.0000e-03
 NotchLength: 0.0080
 NotchWidth: 0.0030
 GroundPlaneLength: 0.0600
 GroundPlaneWidth: 0.0600
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(insetpatch)

See Also
patchMicrostrip | patchMicrostripCircular

 patchMicrostripInsetfed

2-277

Topics
“Analysis of an Inset-Feed Patch Antenna on a Dielectric Substrate”

Introduced in R2017b

2 Objects

2-278

reflectorCircular
Create circular reflector-backed antenna

Description
Use the reflectorCircular object to create a circular reflector-backed antenna. By default the
exciter is a dipole. The dimensions are chosen for an operating frequency of 1 GHz.

Creation

Syntax
rc = reflectorCircular
rc = reflectorCircular(Name,Value)

Description

rc = reflectorCircular creates a circular reflector backed antenna.

 reflectorCircular

2-279

rc = reflectorCircular(Name,Value) sets properties using one or more name-value pair. For
example, rc = reflectorCircular('Radius',0.2) creates a circular reflector of radius 0.2 m.
Enclose each property name in quotes.

Properties
Exciter — Antenna type used as exciter
dipole (default) | object

Antenna type used as an exciter, specified as an object. Except for reflector and cavity antenna
elements, you can use all the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',spiralEquiangular
Example: rc.Exciter = spiralEquiangular

GroundPlaneRadius — Reflector radius
0.1000 (default) | scalar

Radius of reflector, specified as a scalar in meters.
Example: 'Radius',0.2
Example: rc.Radius = 0.2
Data Types: double

Spacing — Distance between exciter and reflector bottom
0.0750 (default) | scalar

Distance between the exciter and the reflector, specified as a scalar in meters.
Example: 'Spacing',7.5e-2
Example: rc.Spacing = 7.5e-2
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | object

Type of dielectric material used as a substrate, specified as an object. For more information see,
dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); rc.Substrate = d

EnableProbeFeed — Create probe feed from backing structure to exciter
0 (default) | 1 | scalar

Create probe feed from backing structure to exciter, specified as 0 or 1 or a scalar. By default, probe
feed is not enabled.
Example: 'EnableProbeFeed',1

2 Objects

2-280

Example: rc.EnableProbeFeed = 1
Data Types: double | logical

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: rc.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

 reflectorCircular

2-281

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Circular Reflector Backed Antenna

Create and view a default circular reflector backed antenna.

rc = reflectorCircular

rc =
 reflectorCircular with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 GroundPlaneRadius: 0.1000
 Spacing: 0.0750
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(rc)

2 Objects

2-282

Radiation Pattern of Circular Reflector Backed Antenna

Create an equiangular spiral backed by a circular reflector.

ant = reflectorCircular('Exciter',spiralEquiangular,'GroundPlaneRadius', ...
 0.02,'Spacing', 0.01);
show(ant)

 reflectorCircular

2-283

Plot the radiation pattern of the antenna at 4 GHz.

pattern(ant,4e9)

2 Objects

2-284

See Also
cavity | cavityCircular | reflector

Introduced in R2017b

 reflectorCircular

2-285

birdcage
Creates birdcage (MRI coil)

Description
The birdcage object creates to create a birdcage MRI coil. This antenna is most commonly used in
clinical MRI. The antenna structure consists of two circular coils connected by conductive elements
called rungs. The number of rungs depends on the size of the coil and is generally an even number.

The coil is operated at 64 MHz or 128 MHz. The birdcage can be loaded/excited to model a highpass
or lowpass coil.

2 Objects

2-286

Creation

Syntax
bc = birdcage
bc = birdcage(Name,Value)

Description

bc = birdcage creates a birdcage antenna to model an MRI coil.

bc = birdcage(Name,Value) sets properties using one or more name-value pairs. For example,
bc = birdcage('NumRungs',8) creates a birdcage with eight rungs. Enclose each property name
in quotes.

Properties
NumRungs — Number of rungs
16 (default) | scalar integer

Number of rungs, specified as a scalar.
Example: 'NumRungs',20
Example: bc.NumRungs = 20
Data Types: int8

CoilRadius — Coil radius
0.4000 (default) | scalar

Coil radius, specified as a scalar in meters.
Example: 'CoilRadius',0.2
Example: bc.CoilRadius = 0.2
Data Types:

CoilHeight — Coil height
0.0400 (default) | scalar

Coil height, specified as a scalar in meters.
Example: 'CoilHeight',0.089
Example: bc.CoilHeight = 0.089
Data Types: double

RungHeight — Height of rungs
0.4600 (default) | scalar

Height of rungs, specified as a scalar in meters. Distance is measured from the middle of the upper
coil to the middle of the lower coil.
Example: 'RungHeight',0.56

 birdcage

2-287

Example: bc.RungHeight = 0.56
Data Types: double

ShieldRadius — Shield radius
0 (default) | scalar

Shield radius, specified as a scalar in meters. A value of zero indicates that the shield is absent.
Example: 'ShieldRadius',0.2
Example: bc.ShieldRadius = 0.2
Data Types: double

ShieldHeight — Shield height
0 (default) | scalar

Shield height, specified as a scalar in meters. A value of zero indicates that the shield is absent.
Example: 'ShieldHeight',0.089
Example: bc.ShieldHeight = 0.089
Data Types: double

Phantom — Dielectric mesh to load birdcage
structure

Dielectric mesh to load birdcage, specified as a structure having the following fields:

Points — Points in custom dielectric mesh
N-by-3 matrix

Points in custom dielectric mesh, specified as an N-by-3 matrix in meters. N is the number of points.

You can use the phantom property to insert a dielectric mesh in the shape of a human head into the
bird cage antenna. This dielectric cylinder has a permeability of 80. You can upload this mesh in the
form of a mat file.
Data Types: double

Tetrahedra — Tetrahedra in custom dielectric mesh
M-by-4 integer matrix

Tetrahedra in custom dielectric mesh, specified as an M-by-4 integer matrix. M is the number of
tetrahedra.
Data Types: double

EpsilonR — Relative permittivity of dielectric material
scalar

Relative permittivity of dielectric material, specified as a scalar.
Data Types: double

LossTangent — Loss in dielectric material
scalar

2 Objects

2-288

Loss in dielectric material, specified as a scalar.
Data Types: double

Data Types: struct

FeedLocations — Location of feeds in Cartesian coordinates
0 (default) | N-by-3 matrix

Location of feeds in Cartesian coordinates, specified as an N-by-3 matrix. You can also use the
getLowPassLocs and getHighPassLocs functions to determine the feed locations in low-pass or
high-pass mode.
Example: 'FeedLocations'= [0.3981 0.0392 -0.2300;0.3528 0.1886 -0.2300]
Example: b.FeedLocations = getLowPassLocs(b)
Data Types: double

FeedVoltage — Magnitude of voltage
1 (default) | scalar | 1-by-N vector

Magnitude of voltage applied to each feed, specified as a scalar or 1-by-N vector with each element
unit in volts.
Example: 'FeedVoltage',2
Example: bc.FeedVoltage = 2
Data Types: double

FeedPhase — Phase shift to the voltage
0 (default) | scalar | 1-by-M vector

Phase shift to the excitation voltage at each feed, specified as a scalar or 1-by-M vector with each
element unit in degrees.
Example: 'FeedPhase',45
Example: bc.FeedPhase = 45
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, it is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: bc.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.

 birdcage

2-289

Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
getLowPassLocs Feeding location to operate birdcage as lowpass coil
getHighPassLocs Feeding location to operate birdcage as highpass coil
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array

2 Objects

2-290

patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Birdcage Antenna

Create and view a default birdcage antenna.

bc = birdcage

bc =
 birdcage with properties:

 NumRungs: 16
 CoilRadius: 0.4000
 CoilHeight: 0.0400
 RungHeight: 0.4600
 ShieldRadius: 0
 ShieldHeight: 0
 Phantom: []
 FeedLocations: [2x3 double]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(bc);

 birdcage

2-291

Plot the radiation pattern at 128 MHz.

pattern(bc,128e6)

2 Objects

2-292

Human Head Model Inside BirdCage

Antenna Toolbox™ provides two .mat files to load a phantom human head model into a birdcage
antenna. The humanheadcoarse.mat contains a coarse dielectric mesh of the human head model and
the humanheadfine.mat provides the user with a finer dielectric mesh. Load the coarse human head
model.

Load human head model file. Extract the values of Points and Tetrahedra. Add a relative
permittivity (EpsilonR) of 10 and a dielectric loss (LossTangent) of 0.002. Scale the dielectric mesh to
fit in the birdcage antenna. In this case, the mesh points are multiplied by 0.003.

load humanheadcoarse.mat
humanhead = struct('Points',0.003*P,'Tetrahedra',T,'EpsilonR',10,...
 'LossTangent',0.002)

humanhead = struct with fields:
 Points: [584x3 double]
 Tetrahedra: [2818x4 double]
 EpsilonR: 10
 LossTangent: 0.0020

Add and view the human head mesh inside the birdcage.

b = birdcage('Phantom',humanhead)

 birdcage

2-293

b =
 birdcage with properties:

 NumRungs: 16
 CoilRadius: 0.4000
 CoilHeight: 0.0400
 RungHeight: 0.4600
 ShieldRadius: 0
 ShieldHeight: 0
 Phantom: [1x1 struct]
 FeedLocations: [2x3 double]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(b)

Birdcage In High-Pass Operation

Create a birdcage antenna.

b = birdcage;
show(b);

2 Objects

2-294

Use the birdcage as a high-pass coil.

b.FeedLocations = getHighPassLocs(b)

b =
 birdcage with properties:

 NumRungs: 16
 CoilRadius: 0.4000
 CoilHeight: 0.0400
 RungHeight: 0.4600
 ShieldRadius: 0
 ShieldHeight: 0
 Phantom: []
 FeedLocations: [32x3 double]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(b);

 birdcage

2-295

Shield the antenna to ensure that radiation does not leak out.

b.ShieldRadius = 0.5;
b.ShieldHeight = 0.5;
show(b) ;

2 Objects

2-296

See Also
dipole | loopCircular

Introduced in R2017b

 birdcage

2-297

sectorInvertedAmos
Create inverted Amos sector antenna

Description
Use the sectorInvertedAmos object to create an inverted Amos sector antenna consisting of four
dipole-like arms. The antenna is fed at the origin of the dipole. The dipole arms are symmetric about
the origin. The operating frequency of the antenna is at 2.45 GHz wireless.

2 Objects

2-298

Creation

Syntax
amossector = sectorInvertedAmos
amossector = sectorInvertedAmos(Name,Value)

Description

amossector = sectorInvertedAmos creates an inverted Amos sector antenna with four dipole-
like arms.

amossector = sectorInvertedAmos(Name,Value) sets properties using one or more name-
value pair. For example, amossector = sectorInvertedAmos('ArmWidth',0.2) creates an
inverted Amos sector with a dipole width of 0.2 m. Enclose each property name in quotes.

Properties
ArmLength — Individual dipole arm length
[0.0880 0.0710 0.0730 0.0650] (default) | vector

Length of individual dipole arms, specified as a vector with each element unit in meters.
Example: 'ArmLength',[0.0980 0.0810 0.0830 0.0750]
Example: amossector.ArmLength = [0.0980 0.0810 0.0830 0.0750]
Data Types: double

ArmWidth — Dipole arm width
0.0040 (default) | scalar

Width of dipole arms, specified as a scalar in meters.
Example: 'ArmWidth',0.0025
Example: amossector.ArmWidth = 0.0025
Data Types: double

NotchLength — Notch length
0.0238 (default) | scalar

Notch length, specified as a scalar in meters. For an inverted Amos sector antenna with seven
stacked arms, six notches are generated. Notch length is measured along the length of the antennas.
Example: 'NotchLength',0.001
Example: amossector.NotchLength = 0.001
Data Types: double

NotchWidth — Notch width
0.0170 (default) | scalar

Notch width, specified as a scalar in meters. For an inverted Amos sector antenna with seven stacked
arms, six notches are generated. Notch width is measured perpendicular to the length of the antenna.

 sectorInvertedAmos

2-299

Example: 'NotchWidth',0.00190
Example: amossector.NotchWidth = 0.00190
Data Types: double

GroundPlaneLength — Ground plane length
0.6600 (default) | scalar

Ground plane length, specified as a scalar in meters. By default, ground plane length is measured
along x-axis.
Example: 'GroundPlaneLength',0.7500
Example: amossector.GroundPlaneLength = 0.7500
Data Types: double

GroundPlaneWidth — Ground plane width
0.0750 (default) | scalar

Ground plane width, specified as a scalar in meters. By default, ground plane width is measured
along y-axis.
Example: 'GroundPlaneWidth',0.0500
Example: amossector.GroundPlaneWidth = 0.0500
Data Types: double

Spacing — Distance between ground plane and antenna element
0.0355 (default) | scalar

Distance between ground plane and antenna element, specified as a scalar in meters.
Example: 'Spacing',0.0355
Example: amossector.Spacing = 0.0355
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, it is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: amossector.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90

2 Objects

2-300

Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

 sectorInvertedAmos

2-301

vswr Voltage standing wave ratio of antenna

Examples

Inverted Amos Sector

Create and view an inverted Amos sector antenna.

sectoria = sectorInvertedAmos

sectoria =
 sectorInvertedAmos with properties:

 ArmLength: [0.0880 0.0710 0.0730 0.0650]
 ArmWidth: 0.0040
 NotchLength: 0.0238
 NotchWidth: 0.0170
 GroundPlaneLength: 0.6600
 GroundPlaneWidth: 0.0750
 Spacing: 0.0355
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(sectoria)

2 Objects

2-302

Plot Radiation Pattern at 2.4 GHz

pattern(sectoria,2.4e9)

See Also
dipoleMeander | reflector

Introduced in R2017b

 sectorInvertedAmos

2-303

antenna.Circle
Create circle centered at origin on X-Y plane

Description
Use the antenna.Circle object to create a circle centered at the origin and on the X-Y plane. You
can use antenna.Polygon to create single-layer or multi-layered antennas using pcbStack.

Creation

Syntax
circle = antenna.Circle
circle = antenna.Circle(Name,Value)

Description

circle = antenna.Circle creates a circle centered at the origin and on the X-Y plane.

circle = antenna.Circle(Name,Value) sets properties using one or more name-value pair. For
example, circle = antenna.Circle('Radius',0.2) creates a circle of radius 0.2 m. Enclose
each property name in quotes.

Properties
Name — Name of circle
'mycircle' (default) | character vector

Name of circle, specified a character vector.
Example: 'Name','Circle1'
Example: circle.Name= 'Circle1'
Data Types: char | string

Center — Cartesian coordinates of center of circle
[0 0] (default) | 2-element vector

Cartesian coordinates of center of circle, specified a 2-element vector with each element measured in
meters.
Example: 'Center',[0.006 0.006]
Example: circle.Center= [0.006 0.006]
Data Types: double

Radius — Circle radius
1 (default) | scalar

2 Objects

2-304

Circle radius, specified a scalar in meters.
Example: 'Radius',2
Example: circle.Radius= 2
Data Types: double

NumPoints — Number of discretization points on circumference
30 (default) | scalar

Number of discretization points on circumference, specified a scalar.
Example: 'NumPoints',16
Example: circle.NumPoints= 2
Data Types: double

Object Functions
add Boolean unite operation on two shapes
subtract Boolean subtraction operation on two shapes
area Calculate area of shape in square meters
intersect Boolean intersection operation on two shapes
rotate Rotate shape about axis and angle
rotateX Rotate shape about X-axis and angle
rotateY Rotate shape about Y-axis and angle
rotateZ Rotate shape about Z-axis and angle
translate Move shape to new location
show Display antenna or array structure; display shape as filled patch
mesh Mesh properties of metal or dielectric antenna or array structure
removeHoles Remove holes from shape
removeSlivers Remove sliver outliers from boundary of shape

Examples

Create Circle with Default Properties

Create and view circle using antenna.Circle and view it.

c1 = antenna.Circle

c1 =
 Circle with properties:

 Name: 'mycircle'
 Center: [0 0]
 Radius: 1
 NumPoints: 30

show(c1)

 antenna.Circle

2-305

Create Circle with Specified Properties

Create a circle with a radius of 4 m.

c2 = antenna.Circle('Radius',4)

c2 =
 Circle with properties:

 Name: 'mycircle'
 Center: [0 0]
 Radius: 4
 NumPoints: 30

Add Two Shapes

Create circle with a radius of 1 m. The center of the circle is at [1 0].

circle1 = antenna.Circle('Center',[1 0],'Radius',1);

Create a rectangle with a length of 2 m and a width of 4 m centered at the origin.

2 Objects

2-306

rect1 = antenna.Rectangle('Length',2,'Width',2);

Add the two shapes together using the + function.

polygon1 = circle1+rect1

polygon1 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [21x3 double]

show(polygon1)

See Also
antenna.Polygon | antenna.Rectangle

Introduced in R2017a

 antenna.Circle

2-307

antenna.Polygon
Create polygon on X-Y plane

Description
Use the antenna.Polygon object to create a polygonal board shape centered at the origin and on
the X-Y plane. You can use antenna.Polygon to create single-layer or multilayered antennas using
pcbStack.

Creation

Syntax
polygon = antenna.Polygon
polygon = antenna.Polygon(Name,Value)

Description

polygon = antenna.Polygon creates a polygonal board shape centered at the origin and on the X-
Y plane.

polygon = antenna.Polygon(Name,Value) sets properties using one or more name-value pair.
For example, polygon = antenna.Polygon('Name','mypolygonboard') creates a polygon
board shape of the name 'mypolygonboard'. Enclose each property name in quotes.

Properties
Name — Name of polygon board shape
'mypolygon' (default) | character vector | string

Name of the polygon board shape, specified a character vector or string.
Example: 'Name','Polygon1'
Example: polygon.Name = 'Polygon1'
Data Types: char | string

Vertices — Cartesian coordinates of polygon vertices
3-by-3 matrix (default) | N-by-3 matrix

Cartesian coordinates of polygon vertices, specified as a N-by-3 matrix with each element measured
in meters, N being the number of points.
Example: 'Vertices',[-1 0 0;-0.5 0.2 0;0 0 0]
Example: polygon.Vertices = [-1 0 0;-0.5 0.2 0;0 0 0]
Data Types: double

2 Objects

2-308

Object Functions
add Boolean unite operation on two shapes
area Calculate area of shape in square meters
subtract Boolean subtraction operation on two shapes
intersect Boolean intersection operation on two shapes
rotate Rotate shape about axis and angle
rotateX Rotate shape about X-axis and angle
rotateY Rotate shape about Y-axis and angle
rotateZ Rotate shape about Z-axis and angle
translate Move shape to new location
show Display antenna or array structure; display shape as filled patch
mesh Mesh properties of metal or dielectric antenna or array structure
removeHoles Remove holes from shape
removeSlivers Remove sliver outliers from boundary of shape

Examples

Create and Transform Polygon

Create a polygon using antenna.Polygon with vertices at [-1 0 0;-0.5 0.2 0;0 0 0] and
view it.

p = antenna.Polygon('Vertices', [-1 0 0;-0.5 0.2 0;0 0 0])

p =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [3x3 double]

show(p)
axis equal

 antenna.Polygon

2-309

Mesh the polygon and view it.

mesh(p,0.2)

2 Objects

2-310

Move the polygon to a new location on the X-Y plane.

translate(p,[2,1,0])
axis equal

 antenna.Polygon

2-311

See Also
antenna.Circle | antenna.Rectangle

Introduced in R2017a

2 Objects

2-312

antenna.Rectangle
Create rectangle centered at origin on X-Y plane

Description
Use the antenna.Rectangle object to create a rectangle centered at the origin and on the X-Y
plane. You can use antenna.Polygon to create single-layer or multi-layered antennas using
pcbStack.

Creation
Syntax
rect = antenna.Rectangle
rect = antenna.Rectangle(Name,Value)

Description

rect = antenna.Rectangle creates a rectangle centered at the origin and on the X-Y plane.

rect = antenna.Rectangle(Name,Value) sets properties using one or more name-value pair.
For example, rectangle = antenna.Rectangle('Length',0.2) creates a rectangle of length
0.2 m. Enclose each property name in quotes.

Properties
Name — Name of rectangle
'myrectangle' (default) | character vector

Name of rectangle, specified a character vector.
Example: 'Name','Rect1'
Example: rectangle.Name = 'Rect1'
Data Types: char | string

Center — Cartesian coordinates of center of rectangle
[0 0] (default) | 2-element vector

Cartesian coordinates of center of rectangle, specified a 2-element vector with each element
measured in meters.
Example: 'Center',[0.006 0.006]
Example: rectangle.Center = [0.006 0.006]
Data Types: double

Length — Rectangle length
1 (default) | scalar

 antenna.Rectangle

2-313

Rectangle length, specified a scalar in meters.
Example: 'Length',2
Example: rectangle.Length = 2
Data Types: double

Width — Rectangle width
2 (default) | scalar

Rectangle width, specified a scalar in meters.
Example: 'Width',4
Example: rectangle.Width = 4
Data Types: double

NumPoints — Number of discretization points per side
2 (default) | scalar

Number of discretization points per side, specified a scalar.
Example: 'NumPoints',16
Example: rectangle.NumPoints = 16
Data Types: double

Object Functions
add Boolean unite operation on two shapes
area Calculate area of shape in square meters
subtract Boolean subtraction operation on two shapes
intersect Boolean intersection operation on two shapes
rotate Rotate shape about axis and angle
rotateX Rotate shape about X-axis and angle
rotateY Rotate shape about Y-axis and angle
rotateZ Rotate shape about Z-axis and angle
translate Move shape to new location
show Display antenna or array structure; display shape as filled patch
mesh Mesh properties of metal or dielectric antenna or array structure
removeHoles Remove holes from shape
removeSlivers Remove sliver outliers from boundary of shape

Examples

Create Rectangle with Default Properties

Create a rectangle shape using antenna.Rectangle and view it.

r1 = antenna.Rectangle

r1 =
 Rectangle with properties:

2 Objects

2-314

 Name: 'myrectangle'
 Center: [0 0]
 Length: 1
 Width: 2
 NumPoints: 2

show(r1)

Create and Rotate Rectangle Using Specified Properties

Create and view a rectangle with a length of 2 m and a width of 4 m.

r2 = antenna.Rectangle('Length',2,'Width',4);
show(r2)
axis equal

 antenna.Rectangle

2-315

Rotate the rectangle.

rotateZ(r2,45);
show(r2)

2 Objects

2-316

Create Notched Rectangle

Create a rectangle with a length of 0.15 m, and a width of 0.15 m.

r = antenna.Rectangle('Length',0.15,'Width',0.15);

Create a second rectangle with a length of 0.05 m, and a width of 0.05 m. Set the center of the
second rectangle at half the length of the first rectangle r.

n = antenna.Rectangle('Center',[0.075,0],'Length',0.05,'Width',0.05);

Create and view a notched rectangle by subtracting n from r.

rn = r-n;
show(rn)

 antenna.Rectangle

2-317

Calculate the area of the notched rectangle.

area(rn)

ans = 0.0212

See Also
antenna.Circle | antenna.Polygon

Introduced in R2017a

2 Objects

2-318

PCBWriter
Create PCB board definitions from 2-D antenna designs

Description
Use the PCBWriter object to create a printed circuit board (PCB) design files based on multilayer 2-
D antenna design. A set of manufacturing files known as Gerber files describes a PCB antennas. A
Gerber file uses an ASCII vector format for 2-D binary images.

Creation

Syntax
b = PCBWriter(pcbstackobject)
b = PCBWriter(pcbstackobject,rfconnector)
b = PCBWriter(pcbstackobject,writer)
b = PCBWriter(pcbstackobject,rfconnector,writer)

Description

b = PCBWriter(pcbstackobject) creates a PCBWriter object that generates Gerber-format PCB
design files based on a 2-D antenna design geometry using PCB stack.

b = PCBWriter(pcbstackobject,rfconnector) creates a customized PCB file using specified
rfconnector type.

b = PCBWriter(pcbstackobject,writer) creates a customized PCB file using a specified PCB
service, writer.

b = PCBWriter(pcbstackobject,rfconnector,writer) creates customised PCB file using
specified PCB service and PCB connector type.

Input Arguments

pcbstackobject — Single feed PCB antenna
pcbStack object

Single feed PCB antenna, specified as a pcbStack object. For more information, see pcbStack.
Example: p1 = pcbStack creates a PCB stack object,p1 a = PCBWriter(p1), uses p1 to create a
PCBWriter object a.

writer — PCB service to view PCB design
object

PCB service to view PCB design, specified as PCBServices object.
Example: s =PCBServices.MayhewWriter; a = PCBWriter(p1,s) uses Mayhew Labs PCB
service to view the PCB design. For more information on manufacturing services, see PCBServices

 PCBWriter

2-319

rfconnector — RF connector type
object

RF connector type for PCB antenna feedpoint, specified as PCBConnectors object. For information
about connectors , see PCBConnectors.
Example: c = PCBConnectors.SMA_Cinch;a = PCBWriter(p1,c) uses SMA_Cinch RF
connector at feedpoint.

Output Arguments

b — PCB Board definition of 2.5D antenna design
object

PCB Board definition of 2.5D antenna design, returned as an object.

Properties
UseDefaultConnector — Use default connector
1 (default) | 0

Use default connector, specified as 0 or 1.
Example: a.UseDefaultConnector = 1, where a is a PCBWriter object.
Data Types: logical

ComponentBoundaryLineWidth — Line widths drawn around components on silk screens
8 (default) | positive scalar

Line widths drawn around components on silk screens, specified as a positive scalar in mils.
Example: a.ComponentBoundaryLineWidth = 10, where a is a PCBWriter object.
Data Types: double

ComponentNameFontSize — Font size to label components on silk screen
positive scalar

Font size to label components on silk screen, specified as a positive scalar in points.
Example: a.ComponentNameFontSize = 12, where a is a PCBWriter object.
Data Types: double

DesignInfoFontSize — Font size for design information added outside board profile
positive scalar

Design information text font size added outside board profile, specified as a positive scalar.
Example: a.DesignInfoFontSize = 12, where a is a PCBWriter object.
Data Types: double

Font — Font used for component name and design info
'Arial' (default) | character vector

Font used for component name and design info, specified as a character vector.

2 Objects

2-320

Example: a.Font = 'TimesNewRoman', where a is a PCBWriter object.
Data Types: char | string

PCBMargin — Copper free margin around board
0.5e-3 (default) | positive scalar

Copper free margin around board, specified as a positive scalar in meters.
Example: a.PCBMargin = 0.7e-3, where a is a PCBWriter object.
Data Types: double

Soldermask — Add solder mask to top and bottom of PCB
'both' (default) | 'top' | 'bottom' | 'none'

Add solder mask to top and bottom of PCB, specified as 'both', 'top', 'bottom' or 'none'.
Example: a.SolderMask = 'top', where a is a PCBWriter object.
Data Types: char | string

Solderpaste — Generate solder paste files
1 (default) | 0

Generate solder paste files as a part of PCB stack, specified as 1 or 0.
Example: a.SolderPaste = 0, where a is a PCBWriter object.
Data Types: logical

Object Functions
gerberWrite Generate Gerber files

Examples

Generate Gerber Format Files From PCB Stack Object

Create a coplanar inverted F antenna

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Create a pcbStack object.

p = pcbStack(fco);
show (p);

 PCBWriter

2-321

Generate a Gerber format design file using PCB Writer.

PW = PCBWriter(p)

PW =
 PCBWriter with properties:

 Design: [1x1 struct]
 Writer: [1x1 Gerber.Writer]
 Connector: []
 UseDefaultConnector: 1
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

Antenna PCB Design Using SMA Cinch Connector

Create a coplanar inverted F antenna.

2 Objects

2-322

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Create a pcbStack object.

p = pcbStack(fco);
show(p)

Create an SMA_Cinch connector using the PCBConnectors object.

c = PCBConnectors.SMA_Cinch

c =
 SMA_Cinch with properties:

 Type: 'SMA'
 Mfg: 'Cinch'
 Part: '142-0711-202'
 Annotation: 'SMA'
 Impedance: 50
 Datasheet: 'https://belfuse.com/resources/Johnson/drawings/dr-142-0711-202.pdf'
 Purchase: 'https://www.digikey.com/product-detail/en/cinch-connectivity-solutions-johnson/142-0711-202/J10154TR-ND/3587681'
 TotalSize: [0.0071 0.0071]
 GroundPadSize: [0.0024 0.0024]
 SignalPadDiameter: 0.0017
 PinHoleDiameter: 0.0013
 IsolationRing: 0.0041
 VerticalGroundStrips: 1

 PCBWriter

2-323

 Cinch 142-0711-202 (Example Purchase)

Create an antenna PCB design file using the connector.

PW = PCBWriter(p,c)

PW =
 PCBWriter with properties:

 Design: [1x1 struct]
 Writer: [1x1 Gerber.Writer]
 Connector: [1x1 PCBConnectors.SMA_Cinch]
 UseDefaultConnector: 0
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

Antenna Design Files Using Advanced Circuits Writer Service

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Create a pcbStack object.

p = pcbStack(fco);
show(p)

2 Objects

2-324

Use an Advanced Circuits Writer as a PCB manufacturing service.

s = PCBServices.AdvancedCircuitsWriter

s =
 AdvancedCircuitsWriter with properties:

 BoardProfileFile: 'legend'
 BoardProfileLineWidth: 1
 CoordPrecision: [2 6]
 CoordUnits: 'in'
 CreateArchiveFile: 1
 DefaultViaDiam: 3.0000e-04
 DrawArcsUsingLines: 0
 ExtensionLevel: 1
 Filename: 'untitled'
 Files: {}
 IncludeRootFolderInZip: 0
 PostWriteFcn: @(obj)sendTo(obj)
 SameExtensionForGerberFiles: 0
 UseExcellon: 1

Create an antenna PCB design file using the above service.

PW = PCBWriter(p,s)

PW =
 PCBWriter with properties:

 PCBWriter

2-325

 Design: [1x1 struct]
 Writer: [1x1 PCBServices.AdvancedCircuitsWriter]
 Connector: []
 UseDefaultConnector: 1
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

Show Antenna PCB Design Using Mayhew Manufacturing Service

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna in creating a pcbStack object.

p = pcbStack(fco)

p =
 pcbStack with properties:

 Name: 'Coplanar Inverted-F'
 Revision: 'v1.0'
 BoardShape: [1×1 antenna.Rectangle]
 BoardThickness: 0.0013
 Layers: {[1×1 antenna.Polygon]}
 FeedLocations: [0 0.0500 1]
 FeedDiameter: 5.0000e-04
 ViaLocations: []
 ViaDiameter: []
 FeedViaModel: 'strip'
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1×1 lumpedElement]

figure
show(p)

2 Objects

2-326

Use an SMA_Cinch as an RF connector and Mayhew Writer as a 3-D viewer.

c = PCBConnectors.SMA_Cinch

c =
 SMA_Cinch with properties:

 Type: 'SMA'
 Mfg: 'Cinch'
 Part: '142-0711-202'
 Annotation: 'SMA'
 Impedance: 50
 Datasheet: 'https://belfuse.com/resources/Johnson/drawings/dr-142-0711-202.pdf'
 Purchase: 'https://www.digikey.com/product-detail/en/cinch-connectivity-solutions-johnson/142-0711-202/J10154TR-ND/3587681'
 TotalSize: [0.0071 0.0071]
 GroundPadSize: [0.0024 0.0024]
 SignalPadDiameter: 0.0017
 PinHoleDiameter: 0.0013
 IsolationRing: 0.0041
 VerticalGroundStrips: 1

 Cinch 142-0711-202 (Example Purchase)

s = PCBServices.MayhewWriter

s =
 MayhewWriter with properties:

 PCBWriter

2-327

 BoardProfileFile: 'legend'
 BoardProfileLineWidth: 1
 CoordPrecision: [2 6]
 CoordUnits: 'in'
 CreateArchiveFile: 0
 DefaultViaDiam: 3.0000e-04
 DrawArcsUsingLines: 1
 ExtensionLevel: 1
 Filename: 'untitled'
 Files: {}
 IncludeRootFolderInZip: 0
 PostWriteFcn: @(obj)sendTo(obj)
 SameExtensionForGerberFiles: 0
 UseExcellon: 1

Create an antenna design file using PCBWriter .

PW = PCBWriter(p,s,c)

PW =
 PCBWriter with properties:

 Design: [1×1 struct]
 Writer: [1×1 PCBServices.MayhewWriter]
 Connector: [1×1 PCBConnectors.SMA_Cinch]
 UseDefaultConnector: 0
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

Use the gerberWrite method to create gerber files from the antenna design files. The files generated
are then send to the Mayhew writer manufacturing service.

gerberWrite(PW)

By default, the folder containing the gerber files is called "untitled" and is located in your MATLAB
folder. Running this example automatically opens up the Mayhew Labs PCB manufacturing service in
your internet browser.

2 Objects

2-328

Drag and drop all your files from the "untitled" folder.

 PCBWriter

2-329

Click Done to view your Antenna PCB.

2 Objects

2-330

See Also
PCBConnectors | PCBServices

Introduced in R2017b

 PCBWriter

2-331

PCBServices
Customize PCB file generation for PCB manufacturing service

Description
Use the PCBServices object to customize printed circuit board (PCB) file generation for a PCB
manufacturing service.

Creation

Syntax
w = PCBServices.servicetype

Description

w = PCBServices.servicetype creates a Gerber file based on the type of service specified in
servicetype.

Input Arguments

servicetype — Type of service from PCB services package
character vector

Type of service from PCB services package, specified as one of the following:

• AdvancedCircuitsWriter – Configure Gerber file generation for Advanced Circuits manufacturing.
• CircuitPeopleWriter – Configure Gerber file generation for CircuitPeople online viewer.
• DirtyPCBsWriter – Configure Gerber file generation for Dirty PCBs manufacturing.
• EuroCircuitsWriter – Configure Gerber file generation for EuroCircuits online viewer.
• GerberLookWriter – Configure Gerber file generation for GerbLook online viewer.
• GerberViewerWriter – Configure Gerber file generation for GerberViewer online viewer.
• MayhewWriter – Configure Gerber file generation for Mayhew Labs online 3-D viewer.
• OSHParkWriter – Configure Gerber file generation for OSH Park PCB manufacturing.
• PCBWayWriter – Configure Gerber file generation for PCBWay PCB manufacturing.
• ParagonWriter – Configure Gerber file generation for Paragon Robotics online viewer.
• SeeedWriter – Configure Gerber file generation for Seeed Fusion PCB manufacturing.
• SunstoneWriter – Configure Gerber file generation for Sunstone PCB manufacturing.
• ZofzWriter – Configure Gerber file generation for Zofz 3-D viewer.

Example: w = PCBServices.SunstoneWriter creates Gerber files configured to use Sunstone
PCB manufacturing service.

2 Objects

2-332

Output Arguments

w — PCB manufacturing service
object

PCB manufacturing service, returned as an object.

Properties
BoardProfileFile — File type for board profile
'legend' | 'profile'

File type for board profile, specified as 'legend' or 'profile'.
Example: w = PCBServices.SunstoneWriter; w.BoardProfileFile = 'profile'.
Data Types: char | string

BoardProfileLineWidth — Width of line
1 | positive scalar

Width of line, specified as a positive scalar in mils.

PCB manufacturers vary on board profile. The most common line width is zero of a fraction width in
the chosen unit, for example, 0.1 mil.
Example: w = PCBServices.SunstoneWriter; w.BoardProfileLineWidth = 0.1
Data Types: double

CoordPrecision — Precision of X and Y coordinates written to file
[2 6] | 1-by-2 vector

Precision of X and Y coordinates written to file, specified as a 1-by2 vector [I F], where,

• I – Number of digits in the integer part, 0<=I<=6.
• F – Number of digits in the fractional part, 4<=F<=6.

Example: w = PCBServices.SunstoneWriter; w.CoordPrecision = [1 3]
Data Types: double

CoordUnits — Units of X and Y coordinate
'in' | 'mm'

Units of X and Y coordinates, specified as inches or millimeters.
Example: w = PCBServices.SunstoneWriter; w.CoordUnits = 'mm'
Data Types: char | string

CreateArchiveFile — Creates single archive file with all Gerber files
1 (default) | 0

Creates single archive file with all Gerber files, specified as 1 or 0.
Example: w = PCBServices.SunstoneWriter; w.CreateArchiveFile = 0
Data Types: logical

 PCBServices

2-333

DefaultViaDiameter — Via drill diameter
3.0000e-04 | positive scalar

Via drill diameter, specified as a positive scalar in meters. PCB manufacturers also call it minimum
drilling hole diameter.
Example: w = PCBServices.SunstoneWriter; w.DefaultViaDiameter = 0.1
Data Types: double

DrawArcsUsingLines — Force arcs to be drawn using lines
0 | 1

Force arcs to be drawn using lines, specified as 1 or 0.
Example: w = PCBServices.SunstoneWriter; w.DrawArcsUsingLines = 0
Data Types: logical

ExtensionLevel — Feature content for Gerber file format
1 (default) | 2

Feature content for Gerber file format, specified as:

• 1 - Extension 1 is the most compatible setting for downstream PCB manufacturing tools.
• 2 - Extension 2 adds file attributes %TF.<attr>*%" to the header and footer of Gerber files.

Example: w = PCBServices.SunstoneWriter; w.ExtensionLevel = 2
Data Types: double

Filename — Name of all files containing Gerber design
'untitled' (default) | character vector

Name of all files containing Gerber design, specified as a character vector.
Example: w = PCBServices.SunstoneWriter; w.Filename = 'antenna_design'.
Data Types: char | string

Files — Define stack of PCB files
character vector

Define stack of PCB files, specified as a character vector. This definition includes:

• Multiples files describing one PCB.
• A "file" as a memory object containing buffers that describe or hold the file content before the file

is written.
• Cell vector of Gerber.FileFunction objects, one per file.

Data Types: cell | char | string

IncludeRootFolderInZip — Include top-level folder in zip archive
1 | 0

Include top-level folder in zip archive, specified as 1 or 0.
Example: w = PCBServices.SunstoneWriter; w.IncludeRootFolderInZip = 0

2 Objects

2-334

Data Types: logical

PostWriteFcn — Function to invoke after a successful write operation
function handle (default)

Function to invoke after a successful write operation, specified as a function handle. In this case, it is
the sendTo function. This property makes sure that the location of the Gerber files and the website of
the manufacturing service is open after a successful write function.
Example: w = PCBServices.SunstoneWriter; w.PostWriteFcn = @(obj)sendTo(obj)
Data Types: function_handle

SameExtensionForGerberFiles — Use .gbr to be file extension for all Gerber files
0 | 1

Use .gbr to be file extension for all Gerber files, specified as 0 or 1.
Example: w = PCBServices.SunstoneWriter; w.SameExtensionForGerberFiles = 1
Data Types: logical

UseExcellon — Generate Excellon drill files
1 | 0

Generate Excellon drill files, specified as 0 or 1.
Example: w = PCBServices.SunstoneWriter; w.UseExcellon = 1, generates Gerber format
drill files with 'x2' extension.
Data Types: logical

Examples

PCB Using Mayhew Labs 3-D Viewer

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna in creating a PCB stack object.

p = pcbStack(fco);
figure;
show(p)

 PCBServices

2-335

Use a Mayhew Writer with a profile board for viewing the PCB in 3D.

s = PCBServices.MayhewWriter;
s.BoardProfileFile = 'profile'

s =
 MayhewWriter with properties:

 BoardProfileFile: 'profile'
 BoardProfileLineWidth: 1
 CoordPrecision: [2 6]
 CoordUnits: 'in'
 CreateArchiveFile: 0
 DefaultViaDiam: 3.0000e-04
 DrawArcsUsingLines: 1
 ExtensionLevel: 1
 Filename: 'untitled'
 Files: {}
 IncludeRootFolderInZip: 0
 PostWriteFcn: @(obj)sendTo(obj)
 SameExtensionForGerberFiles: 0
 UseExcellon: 1

Create an antenna design file using PCBWriter.

PW = PCBWriter(p,s);

2 Objects

2-336

Use the gerberWrite method to create Gerber files from the antenna design files.

gerberWrite(PW)

The location of the folder and the Mayhew labs website opens automatically.

To view the board, drag and drop the files. Click Done.

See Also
PCBConnectors | PCBWriter | gerberWrite

Introduced in R2017b

 PCBServices

2-337

PCBConnectors
RF connector at antenna feedpoint

Description
Use PCBConnectors object to specify RF connectors used for antenna printed circuit board (PCB)
feed points. The result is generally a set of modifications to the PCB design files. The changes to the
PCB include new copper landing pads and traces, and changes to solder mask, silk screen, and solder
paste files.

Creation

Syntax
c = PCBConnectors.connectortype

Description

c = PCBConnectors.connectortype creates Gerber files based on the type of connector to use at
antenna feedpoint specified in connectortype.

Input Arguments

connectortype — Type of connector from PCB connector package
character vector

Type of connector from PCB connector package, specified as one of the following:

• Coax Connectors - Coax RG11, RG174, RG58, and RG59 connectors directly soldered to PCB pads.
• IPX Connectors - LightHorse IPX SMT jack or plug surface mount RF connector.
• MMCX Connectors - MMCX Cinch or Samtec surface mount RF connectors.
• SMA Connectors - Generic 5-pad SMA surface mount RF connectors, with four corner rectangular

pads, one round center pin. Cinch and Multicomp SMA RF connectors.
• SMAEdge Connectors- Generic SMA edge-launch surface mount RF connector. Cinch and Samtec

SMA edge-launch RF connectors.
• SMB Connectors - Johnson/Emerson and Pasternack SMB surface mount RF connectors.
• SMC Connectors - Pasternack SMC and SMC edge-launch surface mount RF connectors.
• Coaxial Cable Connectors - Semi-rigid 0.020 inch, 0.034 inch, 0.047 inch, and 0.118

inch coaxial cable soldered to PCB pads.

For list of connectors, see “PCB Connectors List” on page 2-346.
Example: c = PCBConnectors.Semi_020 creates Gerber files configured to use semi-rigid 0.020
inch coaxial cables.

2 Objects

2-338

Output Arguments

c — PCB connector
object

PCB connector, returned as an object.

Properties
Common Properties for All Connectors

Type — Type of connector
character vector

Type of connector, specified as a character vector.
Example: 'Coax_RG11'
Data Types: char | string

Mfg — Name of component manufacturer
character vector

Name of component manufacturer, specified as a character vector.
Example: 'Belden'
Data Types: char | string

Part — Manufacturer part number
character vector | string

Manufacturer part number, specified as a character vector or string.
Example: 'RG11'
Data Types: char | string

Annotation — Text added to PCB to identify component
character vector

Text added to PCB to identify component, specified as a character vector.
Example: 'RG59U'
Data Types: char | string

Impedance — Connector impedance
50 | positive scalar

Connector impedance, specified as a positive scalar in ohms.
Example: c = PCBConnectors.MMCX_Cinchc.Impedance = 70
Data Types: double

Datasheet — URL for component specifications
character vector

URL for component specifications, specified as a character vector. Data sheets are typically PDF files.

 PCBConnectors

2-339

Data Types: char | string

Purchase — URL for purchasing connector
character vector

URL for purchasing connector, specified as a character vector.
Data Types: char | string

Common Properties for All Coax Connectors

SignalPinDiameter — Circular pad diameter
positive scalar

Circular pad diameter connecting the signal wire of the coax to the feedpoint, specified as a positive
scalar in meters. The pin diameter is greater than the diameter of the signal wire.
Example: c = PCBConnectors.Coax_RG59c.SignalPinDiameter = 1.0000e-03
Data Types: double

DielectricDiameter — Dielectric diameter
positive scalar

Dielectric diameter (white material around signal wire), specified as a positive scalar in meters.
Dielectric diameter specifies the size of the non-conductive isolation ring on the PCB between the
signal wire and the ground plane.
Example: c = PCBConnectors.Coax_RG59c.DielectricDiameter = 0.0073
Data Types: double

ShieldDiameter — Ground ring diameter
positive scalar

Ground ring diameters used to solder coax shield, specified as a positive scalar in meters.
Example: c = PCBConnectors.Coax_RG59c.ShieldDiameter = 0.0085
Data Types: double

AddThermals — Thermal relief
1 | 0

Thermal relief around coaxial shield connection, specified as 0 or 1. Thermal relief reduces the heat
needed to solder the coax shield to the ground.
Example: c = PCBConnectors.Coax_RG59c.AddThermals = 0
Data Types: logical

ThermalsDiameter — Arc-shaped gaps outer diameter
positive scalar

Arc-shaped gaps outer diameter in the ground plane, specified as a positive scalar in meters.
Example: c = PCBConnectors.Coax_RG59c.ThermalsDiameter = 0.0100
Data Types: double

2 Objects

2-340

ThermalsBridgeWidth — Width of four conductive bridges
positive scalar

Width of four conductive bridges created across thermal gap, specified as a positive scalar in meters.
The bridges are established during electrical grounding.
Example: c = PCBConnectors.Coax_RG59c.ThermalBridgeWidth = 0.0015
Data Types: double

Common Properties for All 5-Pad Symmetric Surface Mount Connectors

TotalSize — Total length of each side of rectangular connector footprint
two-element vector

Total length of each side of rectangular connector footprint, specified as a two-element vector with
each element unit in meters.
Example: c = PCBConnectors.SMA_Multicompc.TotalSize = [0.0063 0.0063]
Data Types: double

GroundPadSize — Length of each side of ground pad
two-element vector

Length of each side of ground pad, specified as a two-element vector with each element unit in
meters. The pads are located in each of the four corners of the connector footprint.
Example: c = PCBConnectors.SMA_Multicompc.GroundPadSize = [0.0016 0.0016]
Data Types: double

SignalPadDiameter — Circular pad diameter
positive scalar

Circular pad diameter connecting the signal pin of the coax connector, specified as a positive scalar in
meters. The pad is at the center of the connector footprint.
Example: c = PCBConnectors.SMA_Multicompc.SignalPadDiameter = 0.0012
Data Types: double

PinHoleDiameter — Via pin diameter
positive scalar

Via pin diameter, specified as a positive scalar in meters.
Example: c = PCBConnectors.SMA_Multicompc.ViaPinDiameter = 0.0012
Data Types: double

IsolationRing — Diameter of isolation ring that removes semicircle of copper from inner
corner of ground pads
scalar

Diameter of isolation ring that removes semicircle of copper from inner corner of ground pads,
specified as a scalar in meters.
Example: c = PCBConnectors.SMA_Multicompc.IsoltationRing =0.0012
Data Types:

 PCBConnectors

2-341

VerticalGroundStrips — Vertical ground strips between upper and lower ground pads
scalar

Vertical ground strips between upper and lower ground pads, specified as a scalar.
Example: c = PCBConnectors.SMA_Multicompc.VerticalGroundStrips = 1
Data Types: double

Common Properties for All Edge-Launch Surface Mount Connectors

GroundPadSize — Ground pad size
two-element vector

Ground pad size, specified as a two-element vector with each element unit in meters.
Example: c = PCBConnectors.SMAEdgec.GroundPadSize = [0.0014 0.0042]
Data Types: double

GroundSeparation — Space between ground pads
positive scalar

Space between ground pads on the ground side of the board, specified as a positive scalar in meters.
Example: c = PCBConnectors.SMAEdgec.GroundSeparation = 0.0043
Data Types: double

GroundPadIsolation — Width of copper removed around top layer ground pads
positive scalar

Width of copper removed around top layer ground pads, specified as a positive scalar in meters. This
property isolates the ground pads from any signal traces or structures.
Example: c = PCBConnectors.SMAEdgec.GroundPadIsolation = 2.5000e-04
Data Types: double

SignalPadSize — Signal pad size
two-element vector

Signal pad size, specified as a two-element vector with each element unit in meters.
Example: c = PCBConnectors.SMAEdgec.SignalPadSize = [0.0013 0.0036]
Data Types: double

SignalGap — Gap between PCB edge and start of signal pad copper
positive scalar

Gap between PCB edge and start of signal pad copper, specified as a positive scalar in meters.
Example: c = PCBConnectors.SMAEdgec.SignalGap = 1.0000e-04
Data Types: double

SignalLineWidth — Width of signal trace
positive scalar

2 Objects

2-342

Width of signal trace extending from the signal pad to the feedpoint location, specified as a positive
scalar in meters.
Example: c = PCBConnectors.SMAEdgec.SignalLineWidth = 8.0000e-04
Data Types: double

EdgeLocation — PCB side that receives edge connector
'north' | 'south' | 'east' | 'west'

PCB side that receives edge connector, specified as 'north', 'south', 'east', 'west'.
Example: c = PCBConnectors.SMAEdgec.EdgeLocation = 'south'
Data Types: char

EdgeBoardProfile — Extend PCB to add connector beyond design area
0 | 1

Extend PCB to add connector beyond design area, specified as 0 or 1
Example: c = PCBConnectors.SMAEdgec.EdgeBoardProfile = 1
Data Types: logical

FillGroundSide — Fill connector region on ground side of board with copper
0 | 1

Fill connector region on ground side of the board with copper, specified as 0 or 1
Example: c = PCBConnectors.SMAEdgec.FillGroundSide = 1
Data Types: logical

Common Properties for All Staggered Surface Mount Connectors

GroundPadSize — Ground pad size
two-element vector

Ground pad size, specified as a two-element vector with each element unit in meters.
Example: c = PCBConnectors.IPX_Plug_Lighthorsec.GroundPadSize = [0.0010 0.0022]
Data Types: double

GroundPadXSeparation — Distance between pair of ground pads along X-axis
positive scalar

Distance between pair of ground pads along X-axis, specified as a positive scalar in meters.
Example: c = PCBConnectors.IPX_Plug_Lighthorsec.GroundPadXSeparation = 0.0019
Data Types: double

GroundPadYOffset — Y-offset from signal pad to signal pad center line
positive scalar

Y-offset from signal pad to signal pad center line, specified as a positive scalar in meters.
Example: c = PCBConnectors.IPX_Plug_Lighthorsec.GroundPadYOffset = 0.0015
Data Types: double

 PCBConnectors

2-343

SignalPadSize — Signal pad size
2-element vector

Signal pad size, specified as a 2-element vector with each element unit in meters.
Example: c = PCBConnectors.IPX_Plug_Lighthorsec.SignalPadSize = [1.0000e-03
1.0000e-03]

Data Types: double

SignalMinYSeparation — Minimum separation from ground at bottom or top for signal pad
positive scalar

Minimum separation from ground at bottom or top for signal pad, specified as a positive scalar in
meters.
Example: c = PCBConnectors.IPX_Plug_Lighthorsec.SignalMinYSeparation =
1.0000e-03

Data Types: double

Examples

PCB Using Coax_RG11 Connector

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna to create a pcbStack object.

p = pcbStack(fco);

Use a Coax_RG11 RF connector with a pin diameter of 2 mm.

c = PCBConnectors.Coax_RG11;
c.PinDiameter = 2.000e-03
s = PCBServices.MayhewWriter;

c =

 Coax_RG11 with properties:

 Type: 'Coax'
 Mfg: 'Belden'
 Part: 'RG11'
 Annotation: 'RG11'
 Impedance: 75
 Datasheet: 'http://www.belden.com/techdatas/english/8233.pdf'
 Purchase: ''
 PinDiameter: 0.0020
 DielectricDiameter: 0.0072
 ShieldDiameter: 0.0085
 ThermalsDiameter: 0.0100
 ThermalsBridgeWidth: 0.0015

2 Objects

2-344

 AddThermals: 1

 Belden RG11

Create an antenna design file using PCBWriter .

PW = PCBWriter(p,s,c);

Use the gerberWrite method to create Gerber files from the antenna design files.

gerberWrite(PW)

To view the board, drag and drop the files. Click Done.

Authoring Custom RF Connector

classdef SMA_Jack_Cinch < PCBConnectors.BaseSMT5PadSymmetric
 % Cinch SMA surface mount RF connector.

 PCBConnectors

2-345

 properties (Constant) % Abstract
 Type = 'SMA'
 Mfg = 'Cinch'
 Part = '142-0701-631'
 Annotation = 'SMA'
 Impedance = 50
 Datasheet = 'http://www.farnell.com/datasheets/1720451.pdf?_ga=2.164811836.2075200750.1499379544-42056808.1499379544'
 Purchase = 'http://www.newark.com/johnson/142-0701-631/rf-coaxial-sma-jack-straight-50/dp/50F2712'
 end

 methods
 function RFC = SMA_Jack_Cinch
 RFC.TotalSize = [0.5 0.5]*25.4e-3;
 RFC.GroundPadSize = [0.102 0.102]*25.4e-3;
 RFC.SignalPadDiameter = 0.1*25.4e-3;
 RFC.PinHoleDiameter = 1.27e-3;
 RFC.IsolationRing = 0.22*25.4e-3;
 RFC.VerticalGroundStrips = false;
 end
 end
end

More About
PCB Connectors List

PCB Connectors Descriptions
PCBConnectors.CoaxRG11 RG11 coaxial cable direct soldered to PCB pads.
PCBConnectors.CoaxRG58 RG58 coaxial cable direct soldered to PCB pads.
PCBConnectors.CoaxRG59 RG59 coaxial cable direct soldered to PCB pads.
PCBConnectors.CoaxRG174 RG174 coaxial cable direct soldered to PCB pads.
PCBConnectors.SMA Generic 5-pad SMA surface mount RF connector,

with four corner rectangular ground pads, one
round.

PCBConnectors.SMAEdge Generic SMA edge-launch surface mount RF
connector.

PCBConnectors.SMACinch Cinch SMA surface mount RF connector
PCBConnectors.SMAEdge_Cinch Cinch SMA edge-launch surface mount RF

connector
PCBConnectors.SMAEdge_Samtec Samtec SMA edge-launch surface mount RF

connector
PCBConnectors.SMAEdge_Amphenol Amphenol SMA edge-launch surface mount RF

connector
PCBConnectors.SMAEdge_Linx Linx SMA edge-launch surface mount RF

connector
PCBConnectors.SMA_Multicomp Multicomp SMA surface mount RF connector
PCBConnectors.SMB_Johnson Johnson/Emerson SMB surface mount RF

connector

2 Objects

2-346

PCB Connectors Descriptions
PCBConnectors.SMB_Pasternack Pasternack SMB surface mount RF connector
PCBConnectors.SMC_Pasternack Pasternack SMC surface mount RF connector
PCBConnectors.SMCEdge_Pasternack Pasternack SMC edge-launch surface mount RF

connector
PCBConnectors.MMCX_Cinch Cinch MMCX surface mount RF connector
PCBConnectors.MMCX_Samtec Samtec MMCX surface mount RF connector
PCBConnectors.IPX_Jack_LightHorse LightHorse IPX SMT jack surface mount RF

connector
PCBConnectors.IPX_Plug_LightHorse LightHorse IPX SMT plug surface mount RF

connector
PCBConnectors.UFL_Hirose Hirose u.fl surface mount RF connector
PCBConnectors.Semi_020 Pasternack semi-rigid 0.020" coaxial cable

soldered to PCB pads
PCBConnectors.Semi_034 Pasternack semi-rigid 0.020" coaxial cable

soldered to PCB pads
PCBConnectors.Semi_047 Pasternack semi-rigid 0.047" coaxial cable

soldered to PCB pads
PCBConnectors.Semi_118 Pasternack semi-rigid 0.118" coaxial cable

soldered to PCB pads

See Also
PCBServices | PCBWriter | gerberWrite

Introduced in R2017b

 PCBConnectors

2-347

dipoleJ
Create J-dipole antenna

Description
Use the dipoleJ object to create a J-dipole on the Y-Z plane. The antenna contains a half-wavelength
radiator and a quarter-wavelength stub. By default, the antenna dimensions are for an operating
frequency of 144 MHz.

Creation

Syntax
jdipole = dipoleJ
jdipole = dipoleJ(Name,Value)

2 Objects

2-348

Description

jdipole = dipoleJ creates a J-dipole antenna for an operating frequency of 144 MHz.

jdipole = dipoleJ(Name,Value) creates a J-dipole antenna with additional properties specified
by one or more name-value pair arguments. For example, jdipole = dipoleJ('Width',0.2)
creates a J-dipole with a strip width of 0.2 m. Enclose each property name in quotes.

Properties
RadiatorLength — Radiator length
0.9970 (default) | scalar

Radiator length, specified as a scalar in meters.
Example: 'RadiatorLength',0.9
Example: jdipole.RadiatorLength = 0.9
Data Types: double

StubLength — Parallel line stub length
0.4997 (default) | scalar

Parallel line stub length, specified as a scalar in meters.
Example: 'StubLength',0.3
Example: jdipole.StubLength = 0.3
Data Types: double

Width — Strip width
0.0200 (default) | scalar

Strip width, specified as a scalar in meters.
Example: 'StripWidth',0.0500
Example: jdipole.StripWidth = 0.0500
Data Types: double

Spacing — Space between the stub and the radiator
0.0460 (default) | scalar

Space between the parallel line stub and the radiator, specified as a scalar in meters.
Example: 'Spacing',0.0500
Example: jdipole.Spacing = 0.0500
Data Types: double

FeedOffset — Signed distance to feed from base of stub on large arm
0.0490 (default) | scalar

Signed distance to the feed from the base of stub on the large arm, specified as a scalar in meters.
Example: 'FeedOffset',0.0345

 dipoleJ

2-349

Example: jdipole.FeedOffset = 0.0345
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement, where, lumpedelement is the object handle for the load
created using lumpedElement.
Example: jdipole.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

2 Objects

2-350

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default J-Dipole Antenna

Create and view a default J-dipole antenna.

d = dipoleJ

d =
 dipoleJ with properties:

 RadiatorLength: 0.9970
 StubLength: 0.4997
 Spacing: 0.0460
 Width: 0.0200
 FeedOffset: -0.6994
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(d)

 dipoleJ

2-351

Impedance of J-Dipole Antenna

Create and view a J-dipole antenna with the following specifications:

Radiator length = 0.978 m

Stub length = 0.485 m

FeedOffset = 0.049 m

dj = dipoleJ('RadiatorLength',0.978,'StubLength',0.485, ...
 'FeedOffset',0.070);
show(dj)

2 Objects

2-352

Calculate the impedance of the antenna over a frequency span 140MHz - 150MHz.

impedance(dj,linspace(140e6,150e6,51));

 dipoleJ

2-353

See Also
dipole | dipoleFolded | dipoleVee

Topics
“Rotate Antennas and Arrays”

Introduced in R2018a

2 Objects

2-354

patchMicrostripEnotch
Create probe-fed E-shaped microstrip patch antenna

Description
Use the patchMicrostripEnotch object to create a probe-fed E-shaped microstrip patch antenna.
The default patch is centered at the origin with the feedpoint along the length. By default, the
dimensions are chosen for an operating frequency of 6.6 GHz for air or 5.5 GHz for Teflon.

 patchMicrostripEnotch

2-355

Creation

Syntax
epatch = patchMicrostripEnotch
epatch = patchMicrostripEnotch(Name,Value)

Description

epatch = patchMicrostripEnotch creates an E-shaped microstrip patch antenna.

epatch = patchMicrostripEnotch(Name,Value) sets properties using one or more name-value
pairs. For example, epatch = patchMicrostripEnotch('Width',0.2) creates a microstrip E-
patch with a patch width of 0.2 m. Enclose each property name in quotes.

Properties
Length — Patch length along X-axis
0.0172 (default) | scalar

Patch length along X-axis, specified as a scalar in meters.
Example: 'Length',0.9
Example: epatch.Length = 0.9
Data Types: double

Width — Patch width along Y-axis
0.0200 (default) | scalar

Patch width along Y-axis, specified as a scalar in meters.
Example: 'Width',0.0500
Example: epatch.Width = 0.0500
Data Types: double

Height — Patch height above ground plane along Z-axis
0.0032 (default) | scalar

Patch height above ground plane along Z-axis, specified as a scalar in meters.
Example: 'Height',0.00500
Example: epatch.Height = 0.00500
Data Types: double

CenterArmNotchLength — Notch length on center E-arm along X-axis
0.0028 (default) | scalar

Notch length on center E-arm along X-axis, specified as a scalar in meters.
Example: 'CenterArmNotchLength',0.100
Example: epatch.CenterArmNotchLength = 0.100

2 Objects

2-356

Data Types: double

CenterArmNotchWidth — Notch width on center E-arm along Y-axis
0.0062 (default) | scalar

Notch width on center E-arm along Y-axis, specified as a scalar in meters.
Example: 'CenterArmNotchWidth',0.0600
Example: epatch.CenterArmNotchWidth = 0.0600
Data Types: double

NotchLength — Notch length along X-axis
0.0100 (default) | scalar

Notch length along X-axis, specified as a scalar in meters.
Example: 'NotchLength',0.0200
Example: epatch.NotchLength = 0.0200
Data Types: double

NotchWidth — Notch width along Y-axis
1.00003-03 (default) | scalar

Notch width along Y-axis, specified as a scalar in meters.
Example: 'NotchWidth',0.00600
Example: epatch.NotchWidth = 0.00600
Data Types: double

GroundPlaneLength — Ground plane length along X-axis
0.0250 (default) | scalar

Ground plane length along X-axis, specified as a scalar in meters.
Example: 'GroundPlaneLength',120e-3
Example: epatch.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
0.0300 (default) | scalar

Ground plane width along Y-axis, specified as a scalar in meters.
Example: 'GroundPlaneWidth',120e-3
Example: epatch.GroundPlaneWidth = 120e-3
Data Types: double

PatchCenterOffset — Signed distance of patch from origin
[0 0] (default) | two-element real-valued vector

 patchMicrostripEnotch

2-357

Signed distance of patch from origin, specified as a two-element real-valued vector. Units are in
meters. Use this property to adjust the location of the patch relative to the ground plane. Distances
are measured along the length and width of the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: epatch.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance of feed from origin
[–0.0034 0] (default) | two-element real-valued vector

Signed distance of feed from origin, specified as a two-element real-valued vector. Units are in
meters. Use this property to adjust the location of the feedpoint relative to the ground plane and
patch. Distances are measured along the length and width of the ground plane.
Example: 'FeedOffset',[0.01 0.01]
Example: epatch.FeedOffset = [0.01 0.01]
Data Types: double

FeedDiameter — Feed diameter
0.0013 (default) | scalar

Feed diameter, specified as a scalar in meters.
Example: 'FeedDiameter',0.0600
Example: epatch.FeedDiameter = 0.0600
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric object

Type of dielectric material used as a substrate, specified as a dielectric object. You place the patch
over this dielectric substrate. For more information, see dielectric. For more information on
dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); epatch.Substrate = d

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement, where lumpedelement is the object handle for the load created
using lumpedElement.
Example: epatch.Load = lumpedElement('Impedance',75)

2 Objects

2-358

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure

 patchMicrostripEnotch

2-359

meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default E-Shaped Patch Antenna

Create and view a default E-shaped patch antenna.

epatch = patchMicrostripEnotch

epatch =
 patchMicrostripEnotch with properties:

 Length: 0.0172
 Width: 0.0200
 NotchLength: 0.0100
 NotchWidth: 1.0000e-03
 CenterArmNotchLength: 0.0028
 CenterArmNotchWidth: 0.0062
 Height: 0.0032
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0250
 GroundPlaneWidth: 0.0300
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0034 0]
 FeedDiameter: 0.0013
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(epatch)

2 Objects

2-360

E-Shaped Patch with No Slot Along Center E-Arm

Create and view an E-shaped patch with no slot on the center E-arm.

epatch = patchMicrostripEnotch('CenterArmNotchLength',0);
show(epatch);

 patchMicrostripEnotch

2-361

See Also
patchMicrostrip | patchMicrostripCircular | patchMicrostripTriangular

Topics
“Rotate Antennas and Arrays”

Introduced in R2018a

2 Objects

2-362

patchMicrostripTriangular
Create triangular microstrip patch antenna

Description
Use the patchMicrostripTriangular object to create a triangular microstrip patch antenna. The
default patch is centered at the origin. By default, the dimensions are chosen for an operating
frequency of 15 GHz. If you use a Teflon substrate, the default operating frequency is at 12.5 GHz.

Creation
Syntax
trianglepatch = patchMicrostripTriangular
trianglepatch = patchMicrostripTriangular(Name,Value)

Description

trianglepatch = patchMicrostripTriangular creates a triangular microstrip patch antenna.

trianglepatch = patchMicrostripTriangular(Name,Value) sets properties using one or
more name-value pairs. For example, trianglepatch =

 patchMicrostripTriangular

2-363

patchMicrostripTriangular('Side',0.2) creates a triangular microstrip patch with a side
length of 0.2 m. Enclose each property name in quotes.

Properties
Side — Side lengths of triangular patch
0.0102 (default) | scalar | two or three-element vector

Side lengths of triangular patch, specified as a scalar in meters or a two or three-element vector with
each element unit in meters.

• Equilateral triangle - Side property value is a scalar. All three sides of the triangle are equal.
• Isosceles triangle - Side property value is a two-element vector. The first value specifies the base

of the triangle along the x-axis. The second value specifies the other two sides of the triangle.
• Scalene triangle - Side property value is a three-element vector. The first value specifies the base

of the triangle along the x-axis. The remaining two values specify the other two sides of the
triangle.

Example: 'Side',0.2
Example: trianglepatch.Side = [0.2,0.3,0.4] where the first value is the base of the scalene
triangle along the x-axis.
Data Types: double

Height — Patch height above ground along Z-axis
0.0016 (default) | scalar

Patch height above ground along Z-axis, specified as a scalar in meters.
Example: 'Height',0.2
Example: trianglepatch.Height = 0.002
Data Types: double

GroundPlaneLength — Ground plane length along X-axis
0.0120 (default) | scalar

Ground plane length along X-axis, specified as a scalar in meters.
Example: 'GroundPlaneLength',120e-3
Example: trianglepatch.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
0.0120 (default) | scalar

Ground plane width along Y-axis, specified as a scalar in meters.
Example: 'GroundPlaneWidth',120e-3
Example: trianglepatch.GroundPlaneWidth = 120e-3
Data Types: double

2 Objects

2-364

PatchCenterOffset — Signed distance of patch from origin
[0 0] (default) | two-element real vector

Signed distance of patch from origin, specified as a two-element real vector with each element unit in
meters. Use this property to adjust the location of the patch relative to the ground plane. Distances
are measured along the length and width of the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: trianglepatch.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance of feed from origin
[0 5.4173e-04] (default) | two-element real vector

Signed distance of feed from origin, specified as a two-element real vector with each element unit in
meters. Use this property to adjust the location of the feedpoint relative to the ground plane and
patch. Distances are measured along the length and width of the ground plane.
Example: 'FeedOffset',[0.01 0.01]
Example: trianglepatch.FeedOffset = [0.01 0.01]
Data Types: double

FeedDiameter — Feed diameter
2.5000e-04 (default) | scalar

Feed diameter, specified as a scalar in meters.
Example: 'FeedDiameter',0.0600
Example: trianglepatch.FeedDiameter = 0.0600
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric function handle

Type of dielectric material used as a substrate, specified as a dielectric material object handle. You
can choose any material from the DielectricCatalog or use your own dielectric material. For
more information, see dielectric. For more information on dielectric substrate meshing, see
“Meshing”.

Note The substrate dimensions must be lesser than the ground plane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); ant.Substrate = d

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.

 patchMicrostripTriangular

2-365

Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency

2 Objects

2-366

EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields
of antenna element in arrays

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Triangular Microstrip Patch and Radiation Pattern

Create and view a default triangular microstrip patch.

p = patchMicrostripTriangular

p =
 patchMicrostripTriangular with properties:

 Side: 0.0102
 Height: 0.0016
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0120
 GroundPlaneWidth: 0.0120
 PatchCenterOffset: [0 0]
 FeedOffset: [0 5.4173e-04]
 FeedDiameter: 2.5000e-04
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(p)

 patchMicrostripTriangular

2-367

Plot the radiation pattern at 15 GHz.

pattern(p,15e9)

2 Objects

2-368

Different Types of Triangular Patch Antennas

Create different types of triangles to use in the patch.

Equilateral Triangle

Create an equilateral triangle patch of side 7.2 mm.

ant = patchMicrostripTriangular('Side',7.2e-3);
show(ant);

 patchMicrostripTriangular

2-369

Isosceles Triangle

Create an isosceles triangular patch antenna with sides using the following dimensions: 5 mm and 7.2
mm.

ant = patchMicrostripTriangular('Side',[5e-3,7.2e-3]);
show(ant);

2 Objects

2-370

In the above figure, you will see that the first value of the side is chosen as the base of the triangle.

Scalene Triangle

Create a scalene triangular patch antenna with side using the following dimensions: 8 mm, 5 mm, and
4 mm.

ant = patchMicrostripTriangular('Side',[8e-3, 6e-3, 5e-3]);
show(ant);

 patchMicrostripTriangular

2-371

In the above figure, you will see that the first value of the side is chosen as the base of the triangle.

Triangle Patch Using Teflon Substrate and Radiation Pattern

Create and view a triangular microstrip patch using Teflon substrate.

d = dielectric('Teflon');
p = patchMicrostripTriangular('Substrate',d);
show(p)

2 Objects

2-372

Plot the radiation pattern of the antenna.

pattern(p,12.5e6)

 patchMicrostripTriangular

2-373

See Also
patchMicrostrip | patchMicrostripCircular | patchMicrostripEnotch

Topics
“ISM Band Patch Microstrip Antennas and Mutually Coupled Patches”
“Rotate Antennas and Arrays”

Introduced in R2018a

2 Objects

2-374

reflectorCorner
Create corner reflector-backed antenna

Description
Use the reflectorCorner object to create a corner reflector-backed antenna. By default, the
exciter antenna is a dipole. The feedpoint of the dipole is at the origin. The default dimensions are for
an operating frequency of 1 GHz.

Creation

Syntax
cornerreflector = reflectorCorner
cornerreflector = reflectorCorner(Name,Value)

Description

cornerreflector = reflectorCorner creates a corner reflector backed dipole antenna for an
operating frequency of 1 GHz using default values.

 reflectorCorner

2-375

cornerreflector = reflectorCorner(Name,Value) sets properties using one or more name-
value pairs. For example, cornerreflector = reflectorCorner('CornerAngle',45) creates
a corner reflector-backed antenna with a corner angle of 45 degrees. Enclose each property name in
quotes.

Properties
Exciter — Antenna type used as exciter
dipole (default) | antenna object

Antenna type used as an exciter, specified as an antenna object. Except for reflector and cavity
antenna elements, you can use any of the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',spiralEquiangular
Example: cornerreflector.Exciter = spiralEquiangular

Spacing — Distance between exciter and reflector
0.0750 (default) | scalar

Distance between exciter and reflector, specified as a scalar in meters.
Example: 'Spacing',0.0624
Example: cornerreflector.Spacing = 0.0624
Data Types: double

CornerAngle — Angle made by corner reflector
90 (default) | scalar

Angle made by corner reflector, specified as a scalar in degrees.
Example: 'CornerAngle',60
Example: cornerreflector.CornerAngle = 60
Data Types: double

GroundPlaneLength — Reflector length along X-axis
0.2000 (default) | scalar

Reflector length along the X-axis, specified as a scalar in meters. By default, ground plane length is
measured along the X-axis. You can also set the 'GroundPlaneLength' to zero.
Example: 'GroundPlaneLength',0.4000
Example: cornerreflector.GroundPlaneLength = 0.4000
Data Types: double

GroundPlaneWidth — Reflector width along Y-axis
0.4000 (default) | scalar

Reflector width along the Y-axis, specified as a scalar in meters. By default, ground plane width is
measured along the Y-axis. You can also set the 'GroundPlaneWidth' to zero.
Example: 'GroundPlaneWidth',0.6000
Example: cornerreflector.GroundPlaneWidth = 0.6000

2 Objects

2-376

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object

Loads added to the antenna feed, specified as a lumped element object. You can add a load anywhere
on the surface of the antenna. By default, the load is at the origin. For more information, see
lumpedElement.
Example: 'Load',lumpedelement, where, lumpedelement is the object handle for the load
created using lumpedElement.
Example: cornerreflector.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 reflectorCorner

2-377

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Corner Reflector-Backed Antenna and Radiation Pattern

Create and view a corner reflector-backed dipole.

cornerreflector = reflectorCorner

cornerreflector =
 reflectorCorner with properties:

 Exciter: [1x1 dipole]
 GroundPlaneLength: 0.2000
 GroundPlaneWidth: 0.4000
 CornerAngle: 90
 Spacing: 0.0750
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(cornerreflector)

2 Objects

2-378

Plot the radiation pattern at 1 GHz.

pattern(cornerreflector,1e9)

 reflectorCorner

2-379

See Also
reflector | reflectorCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2018a

2 Objects

2-380

lpda
Create printed log-periodic dipole array antenna

Description
Use the lpda object to create a printed log-periodic dipole array antenna. The default antenna is
centered at the origin and uses an FR4 substrate. This antenna is widely used in communication and
radar due to advantages such as wideband, high gain, and high directivity.

 lpda

2-381

Creation

Syntax
lpdipole = lpda
lpdipole = lpda(Name,Value)

Description

lpdipole = lpda creates a printed log-periodic dipole array antenna using default property values.

lpdipole = lpda(Name,Value) sets properties using one or more name-value pairs. For example,
lpdipole = lpda('BoardLength',0.2) creates a printed log-periodic dipole array with a board
length of 0.2 m.

Note Properties which are not specified retain their default values.

Properties
BoardLength — PCB length along X-axis
0.0366 (default) | scalar

Printed circuit board (PCB) length along X-axis, specified as a scalar in meters.
Example: 'BoardLength',0.2
Example: lpdipole.BoardLength = 0.2
Data Types: double

BoardWidth — PCB width along Y-axis
0.0244 (default) | two-element vector | scalar

PCB width along Y-axis, specified in meters . Width of the PCB in meter. If the value is a scalar, a
rectangular board is created and if the value is a vector with 2 elements, a trapezoidal board is
created. The first element represents width of the board at the shortest end of the dipole and the
second element represents width at the longest end of the dipole.
Example: 'BoardWidth',[0.06 0.06]
Example: lpdipole.BoardWidth = [10e-3 12e-3]
Data Types: double

Height — PCB height along Z-axis
0.0016 (default) | scalar

PCB height along Z-axis, specified as a scalar in meters.
Example: 'Height',0.0018
Example: lpdipole.Height = 0.0018
Data Types: double

2 Objects

2-382

StripLineWidth — Parallel strip line width
0.0012 (default) | scalar

Width of the parallel strip, specified as a scalar in meters.
Example: 'StripLineWidth',0.0014
Example: lpdipole.StripLineWidth = 0.0014
Data Types: double

FeedLength — Distance from edge feed point to smallest dipole
0.0065 (default) | scalar

The distance from the feed point to the smallest dipole , specified as a scalar in meters.
Example: 'FeedLength',0.0055
Example: lpdipole.FeedLength = 0.0055
Data Types: double

ArmLength — Lengths of individual dipole arms
[0.0040 0.0045 0.0050 0.0056 0.0062 0.0069 0.0076 0.0085] (default) | vector

Lengths of individual dipole arms, specified as a vector with each element unit in meters.
Example: 'ArmLength',[0.0050 0.0055 0.0060 0.0066 0.0072 0.0079 0.0086 0.0095]
Example: lpdipole.ArmLength = [0.0050 0.0055 0.0060 0.0066 0.0072 0.0079 0.0086
0.0095]

Data Types: double

ArmWidth — Widths of individual dipole arms
[8.8000e-04 9.8000e-04 0.0011 0.0012 0.0013 0.0015 0.0017 0.0019] (default) |
vector

Widths of individual dipole arms, specified as a vector with each element unit in meters.
Example: 'ArmWidth',[9.8000e-04 10.8000e-04 0.0021 0.0022 0.0023 0.0025 0.0027
0.0029]

Example: lpdipole.ArmWidth = [9.8000e-04 10.8000e-04 0.0021 0.0022 0.0023
0.0025 0.0027 0.0029]

Data Types: double

ArmSpacing — Spacing between individual dipole arms
[0.0027 0.0030 0.0033 0.0037 0.0041 0.0046 0.0051] (default) | vector

Spacing between individual dipole arms, specified as a vector with each element unit in meters.
Example: 'ArmSpacing',[0.0037 0.0040 0.0043 0.0047 0.0051 0.0056 0.0061]
Example: lpdipole.ArmSpacing = [0.0037 0.0040 0.0043 0.0047 0.0051 0.0056
0.0061]

Data Types: double

Substrate — Type of dielectric material
'FR4' (default) | dielectric object

 lpda

2-383

Type of dielectric material used as a substrate, specified as an dielectric object. For more
information, see dielectric. For more information on dielectric substrate meshing, see “Meshing”.

Note The substrate dimensions must be equal to the groundplane dimensions.

Example: d = dielectric('Teflon'); 'Substrate',d
Example: d = dielectric('Teflon'); lpdipole.Substrate = d

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement, where lumpedelement is the object handle for the load created
using lumpedElement.
Example: lpda.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]

2 Objects

2-384

Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Printed Log-Periodic Antenna

Create and view a printed log-periodic dipole array antenna.

lpdipole = lpda

lpdipole =
 lpda with properties:

 BoardLength: 0.0366
 BoardWidth: 0.0244
 Height: 0.0016
 StripLineWidth: 0.0012
 FeedLength: 0.0065
 ArmLength: [0.0040 0.0045 0.0050 0.0056 0.0062 0.0069 0.0076 0.0085]
 ArmWidth: [1x8 double]
 ArmSpacing: [0.0027 0.0030 0.0033 0.0037 0.0041 0.0046 0.0051]
 Substrate: [1x1 dielectric]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 lpda

2-385

show(lpdipole)

Create and View Characteristics of Tapered LPDA

Create a tapered LPDA object and plot impedance over a frequency of 5 - 8GHz. This example also
shows how to plot the 3-D radiation pattern of the antenna.

lpdipole = lpda('BoardWidth',[20.37e-3 24.37e-3]);
show(lpdipole)

2 Objects

2-386

Plot Impedance over the specified frequency range.

freq = linspace(5e9, 8e9, 41);
figure;
impedance(lpdipole,freq)

 lpda

2-387

Plot the 3-D radiation pattern at 5.8 GHz.

pattern(lpdipole,5.8e9)

2 Objects

2-388

See Also
pcbStack | yagiUda

Topics
“Rotate Antennas and Arrays”

Introduced in R2018a

 lpda

2-389

helixMultifilar
Creates bifilar or quadrafilar helix or conical helix antenna on circular ground plane

Description
The helixMultifilar object creates a bifilar or quadrafilar helix or conical helix antenna on a
circular ground plane. You can create both short-circuited and open-ended helix multifilar antennas.
Bifilar and quadrafilar helix antennas are used in aerospace and defense applications.

The width of the strip is related to the diameter of an equivalent cylinder by the equation

w = 2d = 4r

where:

• w is the width of the strip.
• d is the diameter of an equivalent cylinder.
• r is the radius of an equivalent cylinder.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default helix antenna is end-fed. The circular ground plane is on the X-Y plane. Helix
antennas are commonly used in axial mode. In this mode, the helix circumference is comparable to
the operating wavelength, and the helix has maximum directivity along its axis. In normal mode, the
helix radius is small compared to the operating wavelength. In this mode, the helix radiates
broadside, that is, in the plane perpendicular to its axis. The basic equations for the helix are

x = rcos(θ)
y = rsin(θ)
z = Sθ

where:

• r is the radius of the helical dipole.
• θ is the winding angle.
• S is the spacing between turns.

For a given pitch angle in degrees, use the helixpitch2spacing utility function to calculate the
spacing between the turns in meters.

2 Objects

2-390

Creation

Syntax
ant = helixMultifilar
ant = helixMultifilar(Name,Value)

Description

ant = helixMultifilar creates a bifilar or quadrafilar helix or conical helix antenna operating in
the axial mode. The default multifilar helical antenna is end-fed and has a circular ground plane on
the X-Y plane. The default operating frequency is around 2 GHz.

ant = helixMultifilar(Name,Value) sets properties using one or more name-value pairs. For
example, ant = helixMultifilar('Radius',28e-03) creates a multifilar helix with turns of
radius 28e-03 m.

 helixMultifilar

2-391

Properties
NumArms — Number of helical elements
4 (default) | 2

Number of helical elements, specified as 4 or 2. Specify two elements to create a bifilar helix
antenna, and four elements to create a quadrafilar helix antenna.
Example: 'NumArms',2
Example: ant.NumArms = 2
Data Types: double

Radius — Radius of turns
0.0220 (default) | positive scalar integer | two-element vector

Radius of the turns, specified as a positive scalar integer in meters or a two element vector with each
element unit in meters. In the two-element vector, the first element specifies the bottom radius and
the second element specifies the top radius of the conical helix antenna.
Example: 'Radius',28e-03
Example: ant.Radius = 28e-03
Data Types: double

Width — Width of strip
1000e-03 (default) | positive scalar integer

Width of the strip, specified as a positive scalar integer in meters.
Example: 'Width',0.2
Example: ant.Width = 0.2
Data Types: double

Turns — Number of turns
3 (default) | scalar integer

Number of turns, specified as a scalar integer.
Example: 'Turns',4
Example: ant.Turns = 4
Data Types: double

Spacing — Spacing between turns
0.0350 (default) | positive scalar integer

Spacing between the turns, specified as a positive scalar integer in meters.
Example: 'Spacing',7.5e-2
Example: ant.Spacing = 7.5e-2
Data Types: double

ShortEnds — Status of helix ends
0 (default) | 1

2 Objects

2-392

Status of helix ends, specified as 0 or 1. By default, the helixMultifilar is an open circuit. Setting
the property to 1 makes the helix antenna short circuit.
Example: 'ShortEnds',1
Example: ant.ShortEnds = 1
Data Types: double

WindingDirection — Direction of helix turns (windings)
'CW' | 'CCW'

Direction of the helix turns (windings), specified as 'CW' for clockwise or 'CCW' for counter-
clockwise.
Example: 'WindingDirection','CW'
Example: ant.WindingDirection = 'CW'
Data Types: char | string

FeedStubHeight — Height of feeding stub from ground plane
1.000e-03 (default) | positive scalar integer

Height of the feeding stub from the ground plane, specified as a positive scalar integer in meters.
Example: 'FeedStubHeight',7.5e-2
Example: ant.FeedStubHeight = 7.5e-2
Data Types: double

GroundPlaneRadius — Ground plane radius
0.0750 (default) | positive scalar integer

Ground plane radius, specified as a positive scalar integer in meters. By default, the ground plane is
on the X-Y plane and is symmetrical about the origin.

Setting this value to Inf uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneRadius',2.05
Example: ant.GroundPlaneRadius = 7.5e-2
Data Types: double

FeedVoltage — Excitation voltage applied to individual antenna feeds
1 (default) | scalar integer | vector integers

Excitation voltage applied to individual antenna feeds, specified as a scalar integer or vector integers.
A scalar value applies the same voltage to all feeds.
Example: 'FeedVoltage',[1 2]
Example: ant.FeedVoltage = [1 2]
Data Types: double

FeedPhase — Excitation voltage phase applied to individual antenna feeds
0 (default) | scalar integer | vector integers

 helixMultifilar

2-393

Excitation voltage phase applied to individual antenna feeds, specified as a scalar integer or vector
integers. A scalar value applies the same voltage phase to all feeds.
Example: 'FeedPhase',[0 45]
Example: ant.FeedPhase = [0 45]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]

2 Objects

2-394

Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Quadrafilar Helix

Create and view a Quadrafilar helix antenna.

ant = helixMultifilar

ant =
 helixMultifilar with properties:

 NumArms: 4
 Radius: 0.0220
 Width: 1.0000e-03
 Turns: 3
 Spacing: 0.0350
 ShortEnds: 0
 WindingDirection: 'CCW'
 FeedStubHeight: 1.0000e-03
 GroundPlaneRadius: 0.0750
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]

 helixMultifilar

2-395

 Load: [1x1 lumpedElement]

show(ant)

Bifilar Helix

Create and view a bifilar helix antenna.

ant=helixMultifilar('NumArms',2)

ant =
 helixMultifilar with properties:

 NumArms: 2
 Radius: 0.0220
 Width: 1.0000e-03
 Turns: 3
 Spacing: 0.0350
 ShortEnds: 0
 WindingDirection: 'CCW'
 FeedStubHeight: 1.0000e-03
 GroundPlaneRadius: 0.0750
 FeedVoltage: 1
 FeedPhase: 0

2 Objects

2-396

 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Radiation Pattern of Conical Multifilar Helix Antenna

Create and view a conical multifilar helix antenna of radii, 0.0220 m and 0.00800 m respectively.

ant = helixMultifilar('Radius',[0.0080,0.0220],'ShortEnds',1)

ant =
 helixMultifilar with properties:

 NumArms: 4
 Radius: [0.0080 0.0220]
 Width: 1.0000e-03
 Turns: 3
 Spacing: 0.0350
 ShortEnds: 1
 WindingDirection: 'CCW'
 FeedStubHeight: 1.0000e-03
 GroundPlaneRadius: 0.0750

 helixMultifilar

2-397

 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the pattern of the antenna at 3 GHz.

pattern(ant,3e9)

2 Objects

2-398

Overlay the antenna on the pattern.

 helixMultifilar

2-399

See Also
cylinder2strip | dipoleHelix | dipoleHelixMultifilar | helix | helixpitch2spacing

Introduced in R2018b

2 Objects

2-400

dipoleHelixMultifilar
Create balanced bifilar or quadrafilar dipole helix antenna without circular ground plane

Description
The dipoleHelixMultifilar object creates a balanced bifilar or quadrafilar helix antenna without
a circular ground plane. You can create both short-circuited and open-ended dipole helix multifilar
antennas. Bifilar and quadrafilar helix antennas are used in aerospace and defense applications.

The width of the strip is related to the diameter of an equivalent cylinder by the equation

w = 2d = 4r

where:

• w is the width of the strip.
• d is the diameter of an equivalent cylinder.
• r is the radius of an equivalent cylinder.

For a given cylinder radius, use the cylinder2strip utility function to calculate the equivalent
width. The default helix antenna is end-fed. The circular ground plane is on the X-Y plane. Helix
antennas are used commonly in axial mode. In this mode, the helix circumference is comparable to
the operating wavelength, and the helix has maximum directivity along its axis. In normal mode, the
helix radius is small compared to the operating wavelength. In this mode, the helix radiates
broadside, that is, in the plane perpendicular to its axis. The basic equations for the helix are

x = rcos(θ)
y = rsin(θ)
z = Sθ

where:

• r is the radius of the helical dipole.
• θ is the winding angle.
• S is the spacing between turns.

For a given pitch angle in degrees, use the helixpitch2spacing utility function to calculate the
spacing between the turns in meters.

 dipoleHelixMultifilar

2-401

Creation

Syntax
ant = dipoleHelixMultifilar
ant = dipoleHelixMultifilar(Name,Value)

Description

ant = dipoleHelixMultifilar creates a bifilar or quadrafilar helix antenna without a circular
ground plane. The default multifilar helical antenna is end-fed. The default helix operates around 2
GHz.

ant = dipoleHelixMultifilar(Name,Value) sets properties using one or more name-value
pairs. For example, ant = dipoleHelixMultifilar('Radius',28e-03) creates a multifilar
helix with turns of radius 28e-03 m. Enclose each property name in quotes.

2 Objects

2-402

Properties
NumArms — Number of helical elements
4 (default) | 2

Number of helical elements, specified as a 4 or 2. Two elements create a bifilar dipole helix antenna,
and four elements create a quadrafilar dipole helix antenna.
Example: 'NumArms',2
Example: ant.NumArms = 2
Data Types: double

Radius — Radius of turns
0.0220 (default) | positive real scalar

Radius of the turns, specified as a positive real scalar meter.
Example: 'Radius',28e-03
Example: ant.Radius = 28e-03
Data Types: double

Width — Width of strip
1.000e-03 (default) | positive real scalar

Width of the strip, specified as a positive real scalar in meters.
Example: 'Width',0.2
Example: ant.Width = 0.2
Data Types: double

Turns — Number of turns
3 (default) | scalar integer

Number of turns, specified as a scalar integer.
Example: 'Turns',4
Example: ant.Turns = 4
Data Types: double

Spacing — Spacing between turns
0.0350 (default) | positive real scalar

Spacing between the turns, specified as a positive real scalar in meters.
Example: 'Spacing',7.5e-2
Example: ant.Spacing = 7.5e-2
Data Types: double

ShortEnds — Status of ends of helix
1 (default) | 0

 dipoleHelixMultifilar

2-403

Status of ends of the helix, specified as 0 or 1. By default, the dipoleHelixMultifilar is short
circuited. Setting the property to 0 makes the helix antenna an open circuit.
Example: 'ShortEnds',0
Example: ant.ShortEnds = 0
Data Types: double

WindingDirection — Direction of helix turns (windings)
'CCW' (default) | 'CW'

Direction of helix turns (windings), specified as CW or CCW.
Example: 'WindingDirection','CW'
Example: ant.WindingDirection = 'CW'
Data Types: char | string

Load — Lumped elements
[1x1 LumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

2 Objects

2-404

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Multifilar Helical Dipole Antenna

Create and view a default multifilar helical dipole antenna.

ant = dipoleHelixMultifilar

ant =
 dipoleHelixMultifilar with properties:

 NumArms: 4
 Radius: 0.0220
 Width: 1.0000e-03
 Turns: 3

 dipoleHelixMultifilar

2-405

 Spacing: 0.0350
 ShortEnds: 1
 WindingDirection: 'CCW'
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Quadrafilar Helical Dipole Antenna and Radiation Pattern

Create and view a quadrafilar helical dipole antenna with turn radius of 28 mm and strip width of 1.2
mm.

ant = dipoleHelixMultifilar('Radius',28e-3,'Width',1.2e-3,'Turns',4);
show(ant)

2 Objects

2-406

Plot the radiation pattern of the helical dipole at 1.8 GHz.

pattern(ant,1.8e9);

 dipoleHelixMultifilar

2-407

See Also
dipoleHelix | helix | helixMultifilar

Introduced in R2018b

2 Objects

2-408

fractalGasket
Create Sierpinski's Gasket fractal antenna on X-Y plane

Description
The fractalGasket object creates an equilateral triangle-shaped Sierpinski's Gasket fractal
antenna. These fractals are used in building communications systems, wireless networks, universal
tactic communications systems, mobile devices, telematics, and radio frequency identification (RFID)
antennas.

A fractal antenna uses a self-similar design to maximize the length or increase the perimeter of a
material that transmits or receives electromagnetic radiation within a given volume or area. The main
advantage of fractal antennas is that they are compact, which is important requirement for small and
complex circuits. Fractal antennas also have more input impedance or resistance due to increased
length or perimeter.

All fractal antennas are printed structures that are etched on a dielectric substrate.

 fractalGasket

2-409

Creation

Syntax
ant = fractalGasket
ant = fractalGasket(Name,Value)

Description

ant = fractalGasket creates an equilateral triangle-shaped Sierpinski’s gasket fractal antenna.
The default planar fractal antenna is in the shape of a bowtie which is center-fed. The antenna
resonates at a frequency of 1.3 GHz.

2 Objects

2-410

ant = fractalGasket(Name,Value) sets properties using one or more name-value pairs. For
example, ant = fractalGasket('NumIterations',4) creates a Sierpinski's Gasket with four
iterations.

Properties
NumIterations — Number of iterations of fractal antenna
2 (default) | scalar integer

Number of iterations of the fractal antenna, specified as a scalar integer.
Example: 'NumIterations',2
Example: ant.NumIterations = 2
Data Types: double

Side — Lengths for three sides of triangle
0.2000 (default) | scalar | two-element vector | three-element vector

Lengths for three sides of the triangle, specified as a scalar in meters or a two- or three-element
vector in meters.

• Scalar – The triangle is equilateral.
• Two-element vector – The first value specifies the base of the triangle along the X-axis. The second

value specifies the other two sides of the triangle. The triangle is isosceles.
• Three-element vector – The first value specifies the base of the triangle along the X-axis. The

remaining two values specify the other two sides of the triangle. The triangle is scalene.

Example: 'Side',[0.5000,1.000]
Example: ant.Side = [0.5000,1.000]
Data Types: double

NeckWidth — Width at neck of fractal antenna
0.0020 (default) | positive scalar integer

Width at the neck of the fractal antenna where the feed is located, specified as a positive scalar
integer in meters.
Example: 'NeckWidth',0.0050
Example: ant.NeckWidth = 0.0050
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

 fractalGasket

2-411

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure

2 Objects

2-412

meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Sierpinski's Gasket

Create and view a default fractal Sierpinski's Gasket.

ant = fractalGasket

ant =
 fractalGasket with properties:

 NumIterations: 2
 Side: 0.2000
 NeckWidth: 0.0020
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 fractalGasket

2-413

See Also
fractalCarpet | fractalIsland | fractalKoch

Topics
“Rotate Antennas and Arrays”

Introduced in R2018b

2 Objects

2-414

fractalKoch
Create Koch curve fractal dipole or loop antenna on X-Y plane

Description
The fractalKoch object creates a Koch curve fractal dipole or loop antenna on an X-Y plane. These
fractals are used in multiband and wideband applications like Global System for Mobile
Communications (GSM), Universal Mobile Telecommunication Service (UMTS), and Bluetooth.

A fractal antenna uses a self-similar design to maximize the length or increase the perimeter of a
material that transmits or receives electromagnetic radiation within a given volume or area. The main
advantage of fractal antennas is that they are compact, which is an important requirement for small
and complex circuits. Fractal antennas also have more input impedance or resistance due to
increased length or perimeter, respectively.

All fractal antennas are printed structures that are etched on a dielectric substrate.

Creation

Syntax
ant = fractalKoch
ant = fractalKoch(Name,Value)

Description

ant = fractalKoch creates a Koch curve fractal antenna on an X-Y plane. The default is a dipole
with Koch curve length chosen for an operating frequency of 0.86 GHz.

 fractalKoch

2-415

ant = fractalKoch(Name,Value) sets properties using one or more name-value pairs. For
example, ant = fractalKoch('NumIterations',4) creates a Koch curve fractal antenna with
four iterations. Enclose each property name in quotes.

Properties
NumIterations — Number of iterations of fractal antenna
2 (default) | scalar integer

Number of iterations of the fractal antenna, specified as a scalar integer.
Example: 'NumIterations',2
Example: ant.NumIterations = 2
Data Types: double

Length — Length of Koch curve along X-axis
0.0600 (default) | positive scalar integer

Length of the Koch curve along the x-axis, specified as a positive scalar integer in meters.
Example: 'Length',0.5000
Example: ant.Length = 0.5000
Data Types: double

Width — Width of Koch curve along Y-axis
1.0000e-03 (default) | positive scalar integer

Width of the Koch curve along y-axis, specified as a positive scalar integer in meters.
Example: 'Width',0.0050
Example: ant.Width = 0.0050
Data Types: double

Type — Type of Koch configuration
'dipole' (default) | 'loop'

Type of Koch configuration, specified as 'dipole' or 'loop'.
Example: 'Type','loop'
Example: ant.Type = 'loop'
Data Types: char | string

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

2 Objects

2-416

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure

 fractalKoch

2-417

meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Koch Curve Fractal Antenna

Create and view a default Koch curve fractal antenna.

ant = fractalKoch

ant =
 fractalKoch with properties:

 NumIterations: 2
 Length: 0.0600
 Width: 1.0000e-03
 Type: 'dipole'
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

2 Objects

2-418

Koch Loop Fractal Antenna

Create and view a Koch loop fractal antenna with three iterations.

ant = fractalKoch('NumIterations',3,'Type','loop');
show(ant)

 fractalKoch

2-419

See Also
fractalCarpet | fractalGasket | fractalIsland

Topics
“Rotate Antennas and Arrays”

Introduced in R2018b

2 Objects

2-420

reflectorParabolic
Create parabolic reflector antenna

Description
The reflectorParabolic object creates a parabolic reflector antenna. Parabolic reflector antennas
are electrically large structures and are at least 10 wavelengths in diameter. These reflectors are
used in TV antennas and satellite communications, for example.

Creation

Syntax
ant = reflectorParabolic
ant = reflectorParabolic(Name,Value)

Description

ant = reflectorParabolic creates a dipole-fed parabolic reflector antenna. The default antenna
exciter operates at 10 GHz. The reflector is 10λ in diameter, where λ corresponds to the value of
wavelength.

 reflectorParabolic

2-421

ant = reflectorParabolic(Name,Value) sets properties using one or more name-value pairs.
For example, ant = reflectorParabolic('FocalLength',0.5) creates a parabolic reflector
antenna of focal length 0.5 meters.

Properties
Exciter — Antenna type used as exciter
dipole (default) | any single-element antenna object

Antenna type used as an exciter, specified as any single-element antenna object. Except reflector and
cavity antenna elements, you can use any of the single elements in the Antenna Toolbox as an exciter.
Example: 'Exciter',horn
Example: ant.Exciter = horn

Radius — Radius of parabolic reflector
0.1500 (default) | positive scalar integer

Radius of the parabolic reflector, specified as a positive scalar integer in meters.
Example: 'Radius',0.22
Example: ant.Radius = 0.22
Data Types: double

FocalLength — Focal length of parabolic dish
0.0750 (default) | positive scalar integer

Focal length of the parabolic dish, specified as a positive scalar integer in meters.
Example: 'FocalLength',0.0850
Example: ant.FocalLength = 0.0850
Data Types: double

FeedOffset — Signed distance from focus
[0 0 0] (default) | three-element vector

Signed distance from the focus of the parabolic dish, specified as a three-element vector in meters.
By default, the antenna exciter is at the focus of the parabola. Using the FeedOffset property, you
can place the exciter anywhere on the parabola.
Example: 'FeedOffset',[0.0850 0 0]
Example: ant.FeedOffset = [0.0850 0 0]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.

2 Objects

2-422

Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays

 reflectorParabolic

2-423

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Parabolic Reflector and Radiation Pattern

Create and view a default parabolic reflector antenna.

ant = reflectorParabolic

ant =
 reflectorParabolic with properties:

 Exciter: [1x1 dipole]
 Radius: 0.1500
 FocalLength: 0.0750
 FeedOffset: [0 0 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

2 Objects

2-424

Plot the radiation pattern of the parabolic reflector at 10 GHz.

pattern(ant,10e9)

 reflectorParabolic

2-425

See Also
Topics
“Rotate Antennas and Arrays”

Introduced in R2018b

2 Objects

2-426

fractalCarpet
Create Sierpinski's carpet fractal antenna

Description
The fractalCarpet object creates a Sierpinski's carpet fractal antenna. These fractal antennas are
used in mobile phone and Wi-Fi® communications.

A fractal antenna uses a self-similar design to maximize the length or increase the perimeter of a
material that transmits or receives electromagnetic radiation within a given volume or area. The main
advantage of fractal antennas is that they are compact, which is an important requirement for small
and complex circuits. Fractal antennas also have more input impedance or resistance due to
increased length or perimeter.

All fractal antennas are printed structures that are etched on a dielectric substrate.

Creation
Syntax
ant = fractalCarpet
ant = fractalCarpet(Name,Value)

 fractalCarpet

2-427

Description

ant = fractalCarpet creates a Sierpinski’s carpet fractal antenna. The default fractal is centered
at the origin, and the number of iterations is set to 2. The length of the fractal is for an operating
frequency of 5.45 GHz.

ant = fractalCarpet(Name,Value) sets properties using one or more name-value pairs. For
example, ant = fractalCarpet('NumIterations',4) creates a Sierpinski's carpet with four
iterations.

Properties
NumIterations — Number of iterations performed on fractal antenna
2 (default) | scalar integer

Number of iterations performed on the fractal antenna, specified as a scalar integer.
Example: 'NumIterations',4
Example: ant.NumIterations = 4
Data Types: double

Length — Length of fractal carpet along X-axis
0.0280 (default) | positive scalar integer

Length of the fractal carpet along the X-axis, specified as a positive scalar integer in meters.
Example: 'Length',0.5000
Example: ant.Length = 0.5000
Data Types: double

Width — Width of fractal carpet along Y-axis
0.00370 (default) | positive scalar integer

Width of the fractal carpet along the Y-axis, specified as a positive scalar integer in meters.
Example: 'Width',0.0050
Example: ant.Width = 0.0050
Data Types: double

Height — Height of fractal carpet above ground
0.0016 (default) | positive scalar integer

Height of the fractal carpet above the ground plane along the Z-axis, specified as a positive scalar
integer in meters.
Example: 'Height',0.0034
Example: ant.Height = 0.0034
Data Types: double

StripLineWidth — Width of feeding strip line
0.0030 (default) | positive scalar integer

2 Objects

2-428

Width of the feeding strip line, specified as a positive scalar integer in meters.
Example: 'StripLineWidth',0.0050
Example: ant.StripLineWidth = 0.0050
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric object

Type of dielectric material used as a substrate, specified as a dielectric object. For more information,
see dielectric.
Example: d = dielectric('FR4'); ant = fractalCarpet('Substrate',d)
Example: d = dielectric('FR4'); ant = fractalCarpet; ant.Substrate = d;
Data Types: string | char

GroundPlaneLength — Length of ground plane
0.0480 (default) | positive scalar integer

Length of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneLength',0.0550
Example: ant.GroundPlaneLength = 0.0550
Data Types: double

GroundPlaneWidth — Width of ground plane
0.0480 (default) | positive scalar integer

Width of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneWidth',0.0550
Example: ant.GroundPlaneWidth = 0.0550
Data Types: double

FractalCenterOffset — Signed distance of fractal carpet center from origin
[0 0] (default) | two-element real-valued vector

Signed distance of the fractal carpet center from the origin, specified as a two-element real-valued
vector with each element unit in meters.
Example: 'FractalCenterOffset',[0 0.080]
Example: ant.FractalCenterOffset = [0 0.080]
Data Types: double

FeedOffset — Signed distance of feed from origin
[0 0] (default) | two-element real-valued vector

Signed distance of the feed from the origin, specified as a two-element real-valued vector with each
element unit in meters.
Example: 'FeedOffset',[0 0.080]
Example: ant.FeedOffset = [0 0.080]

 fractalCarpet

2-429

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-430

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Sierpinski's Carpet Antenna

Create and view a Sierpinski's carpet fractal antenna with default property values.

ant = fractalCarpet

ant =
 fractalCarpet with properties:

 NumIterations: 2
 Length: 0.0280
 Width: 0.0370
 StripLineWidth: 0.0030
 FeedOffset: [-0.0240 -0.0020]
 Height: 0.0016
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0480
 GroundPlaneWidth: 0.0480
 FractalCenterOffset: [0 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 fractalCarpet

2-431

Radiation Pattern of Sierpinski's Carpet Antenna on FR4 Substrate

Create and view a Sierpinski's carpet fractal antenna on FR4 substrate.

ant = fractalCarpet('Substrate',dielectric('FR4'));
show(ant)

2 Objects

2-432

Plot the radiation pattern of the antenna at 5.45 GHz.

pattern(ant,5.45e9)

 fractalCarpet

2-433

See Also
fractalGasket | fractalIsland | fractalKoch

Topics
“Rotate Antennas and Arrays”

Introduced in R2019a

2 Objects

2-434

fractalIsland
Minkowski's loop fractal antenna

Description
The fractalIsland object creates a Minkowski's loop fractal antenna. These fractal antennas are
used in mobile phone and Wi-Fi communications.

A fractal antenna uses a self-similar design to maximize the length or increase the perimeter of a
material that transmits or receives electromagnetic radiation within a given volume or area. The main
advantage of fractal antennas is that they are compact, which is an important requirement for small
and complex circuits. Fractal antennas also have more input impedance or resistance due to
increased length or perimeter.

All fractal antennas are printed structures that are etched on a dielectric substrate.

Creation
Syntax
ant = fractalIsland
ant = fractalIsland(Name,Value)

 fractalIsland

2-435

Description

ant = fractalIsland creates a Minkowski's loop fractal antenna. The default fractal is centered
at the origin, and the number of iterations is set to 2. The length of the fractal is for an operating
frequency of 6 GHz.

ant = fractalIsland(Name,Value) sets properties using one or more name-value pairs. For
example, ant = fractalIsland('NumIterations',4) creates a Minkowski's loop with four
iterations.

Properties
NumIterations — Number of iterations performed on fractal antenna
2 (default) | scalar integer

Number of iterations performed on the fractal antenna, specified as a scalar integer.
Example: 'NumIterations',4
Example: ant.NumIterations = 4
Data Types: double

Length — Length of fractal island along X-axis
0.0295 (default) | positive scalar integer

Length of the fractal island along the X-axis, specified as a positive scalar integer in meters.
Example: 'Length',0.5000
Example: ant.Length = 0.5000
Data Types: double

Width — Width of fractal island along Y-axis
0.0295 (default) | positive scalar integer

Width of the fractal island along the Y-axis, specified as a positive scalar integer in meters.
Example: 'Width',0.0050
Example: ant.Width = 0.0050
Data Types: double

StripLineWidth — Width of feeding strip line
6.0000e-04 (default) | positive scalar integer

Width of the feeding strip line, specified as a positive scalar integer in meters.
Example: 'StripLineWidth',3.0000e-04
Example: ant.StripLineWidth = 3.0000e-04
Data Types: double

SlotLength — Length of slot along X-axis
0.0040 (default) | positive scalar integer

Length of the slot along the X-axis, specified as a positive scalar integer in meters.

2 Objects

2-436

Example: 'SlotLength',0.0050
Example: ant.SlotLength = 0.0050
Data Types: double

SlotWidth — Width of slot along Y-axis
0.0040 (default) | positive scalar integer

Width of the slot along the Y-axis, specified as a positive scalar integer in meters.
Example: 'SlotWidth',0.0050
Example: ant.SlotWidth = 0.0050
Data Types: double

Height — Height of fractal above ground
0.0016 (default) | positive scalar integer

Height of the fractal above the ground plane along the Z-axis, specified as a positive scalar integer in
meters.
Example: 'Height',0.0034
Example: ant.Height = 0.0034
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric object

Type of dielectric material used as a substrate, specified as a dielectric object. For more information,
see dielectric.
Example: d = dielectric('FR4'); ant = fractalIsland('Substrate',d)
Example: d = dielectric('FR4'); ant = fractalIsland; ant.Substrate = d;
Data Types: string | char

GroundPlaneLength — Length of ground plane
0.0500 (default) | positive scalar integer

Length of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneLength',0.0550
Example: ant.GroundPlaneLength = 0.0550
Data Types: double

GroundPlaneWidth — Width of ground plane
0.0300 (default) | positive scalar integer

Width of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneWidth',0.0550
Example: ant.GroundPlaneWidth = 0.0550
Data Types: double

 fractalIsland

2-437

FractalCenterOffset — Signed distance of fractal center from origin
[0 0] (default) | two-element real-valued vector

Signed distance of the fractal center from the origin, specified as a two-element real-valued vector
with each element unit in meters.
Example: 'FractalCenterOffset',[0 0.080]
Example: ant.FractalCenterOffset = [0 0.080]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]

2 Objects

2-438

Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Minkowski's Loop Fractal Antenna

Create and view a Minkowski's loop fractal antenna with default property values.

ant = fractalIsland

ant =
 fractalIsland with properties:

 NumIterations: 2
 Length: 0.0295
 Width: 0.0295
 StripLineWidth: 6.0000e-04
 SlotLength: 0.0040
 SlotWidth: 0.0040
 Height: 0.0016
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0500
 GroundPlaneWidth: 0.0300
 FractalCenterOffset: [0 0]

 fractalIsland

2-439

 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Radiation Pattern of Minkowski's Loop Fractal Antenna on FR4 Substrate

Create and view a Minkowski's loop fractal antenna on FR4 substrate.

ant = fractalIsland('Substrate',dielectric('FR4'));
show(ant)

2 Objects

2-440

Plot the radiation pattern of the antenna at 6 GHz.

pattern(ant,6e9)

 fractalIsland

2-441

See Also
fractalCarpet | fractalGasket | fractalKoch

Topics
“Rotate Antennas and Arrays”

Introduced in R2019a

2 Objects

2-442

dipoleCrossed
Crossed dipole or turnstile antenna

Description
The dipoleCrossed object creates a turnstile antenna. By default, the turnstile antenna is center-
fed and is on the Y-Z plane. This antenna operates at 6 GHz. You can also create a turnstile antenna
using the following antenna elements: bowtieTriangular, bowtieRounded, and dipoleBlade.

Creation

Syntax
ant = dipoleCrossed
ant = dipoleCrossed(Name,Value)

Description

ant = dipoleCrossed creates a center-fed turnstile antenna operating at 6 GHz.

 dipoleCrossed

2-443

ant = dipoleCrossed(Name,Value) sets properties using one or more name-value pairs. For
example, ant = dipoleCrossed('Element',dipoleBlade) creates a turnstile antenna using a
blade dipole antenna.

Properties
Element — Antenna element to create turnstile antenna
dipole (default) | antenna object

Antenna element to create a turnstile antenna, specified as an antenna object. You can also use the
following antenna objects: bowtieTriangular, bowtieRounded, and dipoleBlade.
Example: 'Element',dipoleBlade
Example: ant.Element = dipoleBlade
Data Types: char | string

ArmElevation — Angles made by antenna element arms
[45 -45] (default) | two-element signed vector

Angles made by the antenna element arms with respect to the X-Y plane, specified as a two-element
signed vector.
Example: 'ArmElevation',[50 -60]
Example: ant.ArmElevation = [50 -60]
Data Types: double

FeedVoltage — Magnitude of voltage applied to feeds
[1 1] (default) | two-element vector

Magnitude of voltage applied to the feeds, specified as a two-element vector with each element in
volts.
Example: 'FeedVoltage',[2 2]
Example: ant.FeedVoltage = [2 2]
Data Types: double

FeedPhase — Phase shift applied to voltage at feeds
[0 90] (default) | two-element vector

Phase shift applied to the voltage at the feeds, specified as a two-element vector with each element in
degrees.
Example: 'FeedPhase',[0 50]
Example: ant.FeedPhase = [0 50]
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector in degrees.
Example: 'Tilt',90

2 Objects

2-444

Example: ant.Tilt = [90 90 0]
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency

 dipoleCrossed

2-445

EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields
of antenna element in arrays

impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Crossed Dipole Antenna

Create and view a crossed dipole antenna with default property values.

ant = dipoleCrossed

ant =
 dipoleCrossed with properties:

 Element: [1x1 dipole]
 ArmElevation: [45 -45]
 FeedVoltage: [1 1]
 FeedPhase: [0 90]
 Tilt: 0
 TiltAxis: [1 0 0]

show(ant)

2 Objects

2-446

See Also
bowtieRounded | bowtieTriangular | dipoleBlade

Topics
“Rotate Antennas and Arrays”

Introduced in R2019a

 dipoleCrossed

2-447

patchMicrostripHnotch
H-shaped microstrip patch antenna

Description
Use the patchMicrostripHnotch object to create an H-shaped microstrip patch antenna. The
default patch is centered at the origin with the feedpoint along the length. By default, the dimensions
are chosen for an operating frequency of 3.49 GHz for air or 2.61 GHz for Teflon.

Creation

Syntax
ant = patchMicrostripHnotch
ant = patchMicrostripHnotch(Name,Value)

Description

ant = patchMicrostripHnotch creates an H-shaped microstrip patch antenna.

ant = patchMicrostripHnotch(Name,Value) sets properties using one or more name-value
pairs. For example, ant = patchMicrostripHnotch('Width',0.2) creates a microstrip H-patch
with a patch width of 0.2 m. Enclose each property name in quotes.

2 Objects

2-448

Properties
Length — Patch length along X-axis
0.0290 (default) | scalar

Patch length along the X-axis, specified as a scalar in meters.
Example: 'Length',0.0450
Example: ant.Length = 0.0450
Data Types: double

Width — Patch width along Y-axis
0.0300 (default) | scalar

Patch width along the Y-axis, specified as a scalar in meters.
Example: 'Width',0.0500
Example: ant.Width = 0.0500
Data Types: double

NotchLength — Notch length along X-axis
0.0065 (default) | scalar

Notch length along the X-axis, specified as a scalar in meters.
Example: 'NotchLength',0.0200
Example: ant.NotchLength = 0.0200
Data Types: double

NotchWidth — Notch width along Y-axis
0.0076 (default) | scalar

Notch width along the Y-axis, specified as a scalar in meters.
Example: 'NotchWidth',0.00600
Example: ant.NotchWidth = 0.00600
Data Types: double

Height — Patch height above ground plane along Z-axis
0.0016 (default) | scalar

Patch height above the ground plane along the Z-axis, specified as a scalar in meters.
Example: 'Height',0.00500
Example: ant.Height = 0.00500
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric object

Type of dielectric material used as a substrate, specified as a dielectric object. For more information
see, dielectric.

 patchMicrostripHnotch

2-449

Example: d = dielectric('FR4'); ant = patchMicrostripHnotch('Substrate',d)
Example: d = dielectric('FR4'); ant = patchMicrostripHnotch; ant.Substrate = d;
Data Types: string | char

GroundPlaneLength — Ground plane length along X-axis
0.0435 (default) | scalar

Ground plane length along the X-axis, specified as a scalar in meters. Setting the ground plane length
to Inf uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneLength',120e-3
Example: ant.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width along Y-axis
0.0450 (default) | scalar

Ground plane width along the Y-axis, specified as a scalar in meters. Setting the ground plane width
to Inf uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',120e-3
Example: ant.GroundPlaneWidth = 120e-3
Data Types: double

PatchCenterOffset — Signed distance of patch from origin
[0 0] (default) | two-element real-valued vector

Signed distance of the patch from the origin, specified as a two-element real-valued vector with each
element unit in meters. Use this property to adjust the location of the patch relative to the ground
plane. Distances are measured along the length and width of the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: ant.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance of feed from origin
[–0.0025 -0.0050] (default) | two-element real-valued vector

Signed distance of the feed from the origin, specified as a two-element real-valued vector with each
element unit in meters. Use this property to adjust the location of the feedpoint relative to the ground
plane and patch. Distances are measured along the length and width of the ground plane.
Example: 'FeedOffset',[0.01 0.01]
Example: ant.FeedOffset = [0.01 0.01]
Data Types: double

FeedDiameter — Feed diameter
1.0000e-03 (default) | scalar

Feed diameter, specified as a scalar in meters.
Example: 'FeedDiameter',0.0600

2 Objects

2-450

Example: ant.FeedDiameter = 0.0600
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the origin. For more
information, see lumpedElement.
Example: 'Load',lumpedelement, where lumpedelement is the object handle for the load created
using lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

 patchMicrostripHnotch

2-451

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Microstrip Patch H-Notch

Create and view a microstrip patch H-notch with default property values.

ant = patchMicrostripHnotch;
show(ant)

2 Objects

2-452

Microstrip Patch H-Notch with Dielectric Substrate

Create an H-shaped patch with dielectric substrate of permittivity 2.33.

ant = patchMicrostripHnotch('Substrate',dielectric('EpsilonR',2.33,'LossTangent',0.0012));
show(ant);

 patchMicrostripHnotch

2-453

See Also
patchMicrostrip | patchMicrostripCircular | patchMicrostripTriangular

Topics
“Rotate Antennas and Arrays”

Introduced in R2019a

2 Objects

2-454

installedAntenna
Installed antenna setup

Description
The installedAntenna object creates an installed antenna setup that enables you to mount
antennas on a platform for analysis.

Installed antenna analysis involves an electrically large structure called a platform. Around this
platform, different antenna elements are placed. You can analyze the effects of the platform on the
antenna performance. Installed antenna analysis is commonly used in aerospace, defense, and auto
applications. The platforms in this case are planes, ships, or inside the bumper of a car.

Another common application of installed antenna analysis is to determine the interference of different
antennas placed on a large platform.

Creation

Syntax
ant = installedAntenna
ant = installedAntenna(Name,Value)

Description

ant = installedAntenna creates an installed antenna setup. The default setup has a rectangular
reflector in the X-Y plane as the platform with a dipole as the antenna. The dimensions of the dipole
antenna are chosen for an operating frequency of 1 GHz.

ant = installedAntenna(Name,Value) sets properties using one or more name-value pairs. For
example, ant = installedAntenna('Element',monopole) creates an installed antenna setup
using monopole as the antenna.

Output Arguments

ant — Installed antenna setup
installedAntenna object

Installed antenna setup, returned as an installedAntenna object.

Properties
Platform — Platform object file
platform object

Platform object file, specified as a platform object.

 installedAntenna

2-455

Example: plat = platform('FileName','plate.stl'); ant =
installedAntenna('Platform',plat) This code creates a platform object called plat and
uses it for installed antenna analysis.
Example: plat = platform('FileName','plate.stl'); ant =
installedAntenna;ant.Platform = plat This code creates a platform object called plat and
uses it for installed antenna analysis.
Data Types: char

Element — Single or multiple antenna elements
antenna object | vector of antenna objects

Single or multiple antennas, specified as an antenna object or a vector of antenna objects.
Example: d = dipole; ant = installedAntenna('Element',d) This code creates a dipole
antenna object and uses it for installed antenna analysis.
Example: d = dipole; ant = installedAntenna;ant.Element=d This code creates a dipole
antenna object and uses it for installed antenna analysis.
Example: ant = installedAntenna('Element',{discone,monocone},'ElementPosition',
[0.1 0.1 0.5; -0.1 -0.1 0.5]) This code creates discone and monocone antenna objects for
installed antenna analysis.
Data Types: char

ElementPosition — Position of feed or origin of each antenna element
[0 0 0.0750] (default) | vector of [x,y,z] coordinates

Position of the feed or the origin of each antenna element, specified as a vector of [x,y,z] coordinates
with each element unit in meters.
Example: 'ElementPosition',[0 0 0.0050]
Example: ant.ElementPosition = [0 0 0.0050]
Data Types: double

Reference — Reference for positioning antenna elements
'feed' (default) | 'origin'

Reference for positioning the antenna elements, specified as 'feed' or 'origin'.
Example: 'Reference','origin'
Example: ant.Reference = 'origin'
Data Types: string

FeedVoltage — Excitation amplitude for antenna elements
1 (default) | vector

Excitation amplitude for the antenna elements, specified as a scalar vector in volts.
Example: 'FeedVoltage',2
Example: ant.FeedVoltage = 2
Data Types: double

2 Objects

2-456

FeedPhase — Phase shift of each antenna element
0 (default) | vector

Phase shift of each antenna element, specified as a scalar or vector in degrees.
Example: 'FeedPhase',50
Example: ant.FeedPhase = 50
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 installedAntenna

2-457

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Installed Antenna Setup and Analysis

Create a default installed antenna.

ant = installedAntenna

ant =
 installedAntenna with properties:

 Platform: [1x1 platform]
 Element: [1x1 dipole]
 ElementPosition: [0 0 0.0750]
 Reference: 'feed'
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(ant);

2 Objects

2-458

Calculate the impedance of the antenna.

figure;
impedance(ant, linspace(950e6, 1050e6, 51));

 installedAntenna

2-459

Visualize the pattern of the antenna.

figure;
pattern(ant, 1e9);

2 Objects

2-460

See Also
platform

Topics
“Rotate Antennas and Arrays”

Introduced in R2019a

 installedAntenna

2-461

platform
Create platform object for installed antenna setup

Description
The platform object creates a platform to be used in an installed antenna setup.

Installed antenna analysis involves an electrically large structure called a platform. Around this
platform different antenna elements are placed. You can analyze the effects of the platform on the
antenna performance. Installed antenna analysis is commonly used in aerospace, defense, and auto
applications. The platforms in this case are planes, ships, or inside the bumper of a car.

Another common application of installed antenna analysis is to determine the interference of different
antennas placed on a large platform.

Creation

Syntax
plat = platform
plat = platform(Name,Value)

Description

plat = platform creates a platform object for an installed antenna setup. The default platform is a
rectangular reflector in the X-Y plane stored in the plate.stl file.

plat = platform(Name,Value) sets properties using one or more name-value pairs. For example,
ant = platform('FileName','reflector.stl') creates a platform object defined by the data
in the file reflector.stl

Output Arguments

plat — Platform for installed antenna setup
platform object

Platform for installed antenna setup, returned as a platform object.

Properties
FileName — STL file defining platform
'[]' (default) | string array | character vector

STL file defining the platform, specified as a string or a character vector.
Example: plat = platform('FileName','reflector.stl') creates a platform with file name
reflector.stl.

2 Objects

2-462

Example: plat = platform; plat.FileName = 'reflector.stl' creates a platform with file
name reflector.stl.
Data Types: char | string

Units — Units for STL file
'mm' (default) | string | character

Units for the STL file, specified as a string array or character vector.
Example: plat = platform('Units','m') Creates a platform with STL file units in meters.
Example: plat = platform;plat.Units = 'm' Creates a platform with STL file units in meters.
Data Types: char | string

UseFileAsMesh — STL file used as the mesh for analysis
'0' (default) | '1' | string array | character vector

Use the .stl file directly as the mesh for analysis
Example: plat = platform('UseFileAsMesh','1). Uses the .stl file in the FileName property
directly as a mesh..
Example: plat = platform; plat.UseFileAsMesh = '1' . Uses the .stl file in the FileName
property directly as a mesh..
Data Types: logical

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

 platform

2-463

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
stlwrite Write mesh to STL file

Examples

Platform from STL of Waveguide Antenna

Create a waveguide antenna for operation at 8 GHz and compute the impedance.

w = design(waveguide,8e9);
Z = impedance(w,8e9);

Create an STL file for the above antenna.

stlwrite(w,'waveguide_8GHz.stl')

You will see the waveguide_8GHz.stl file in your current folder.

Load waveduide_8GHz.stl and visualize the platform.

plat = platform('FileName','waveguide_8GHz.stl','Units','m')

plat =
 platform with properties:

 FileName: 'waveguide_8GHz.stl'
 Units: 'm'
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(plat)

2 Objects

2-464

See Also
installedAntenna | stlwrite

Topics
“Rotate Antennas and Arrays”
“Hybrid MoM-PO Method for Metal Antennas with Large Scatterers”

Introduced in R2019a

 platform

2-465

discone
Create discone antenna

Description
The discone object creates a discone antenna that consists of a circular disc and a cone whose apex
approaches the center of the disc. A small gap exists between the disc and the cone through which
the feed is connected.

A discone antenna is an omnidirectional vertically polarized antenna. This antenna has an
exceptionally large coverage, offering a frequency range ratio of up to 10:1 between the upper cutoff
frequency and the lower cutoff frequency. The discone antenna wideband coverage makes it useful in
commercial, military, amateur radio, and radio scanner applications.

2 Objects

2-466

Creation

Syntax
ant = discone
ant = discone(Name,Value)

Description

ant = discone creates a discone antenna with dimensions for a resonant frequency of 2.12 GHz.
The default discone has a feedpoint at the center of the disc.

ant = discone(Name,Value) sets properties using one or more name-value pairs. For example,
ant = discone('Height',1) creates a discone antenna with a cone of height 1 meter.

Properties
Height — Vertical height of cone
0.0744 (default) | real-valued scalar

Vertical height of the cone from the center of the lower base of the cone to the center of the upper
base of the cone, specified as a real-valued scalar in meters.
Example: 'Height',1
Example: ant.Height = 1
Data Types: double

ConeRadii — Radii of cone
[5.3300e-04 0.0426] (default) | vector

Radii of the cone consisting of the broad radius and the narrow radius, specified as a vector with each
element unit in meters. The first element of the vector is the narrow radius, and the second element
of the vector is the broad radius.
Example: 'ConeRadii',[6.3300e-04 0.0546]
Example: ant.ConeRadii = [6.3300e-04 0.0546]
Data Types: double

DiscRadius — Radius of disc
0.0298 (default) | real-valued scalar

Radius of the disc, specified as a real-valued scalar in meters.
Example: 'DiscRadius',0.0050
Example: ant.DiscRadius = 0.050
Data Types: double

FeedHeight — Gap between cone and disc
3.1980e-04 (default) | real-valued scalar

Gap between the cone and the disc, specified as a real-valued scalar in meters.

 discone

2-467

Example: 'FeedHeight',0.0034
Example: ant.FeedHeight = 0.0034
Data Types: double

FeedWidth — Width of feed
4.2640e-04 (default) | real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0050
Example: ant.FeedWidth = 0.0050
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

2 Objects

2-468

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
coneangle2size Calculates equivalent cone height, broad radius, and narrow radius for cone
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Discone Antenna and Radiation Pattern

Create and view a default discone antenna.

ant = discone;
show(ant)

 discone

2-469

Plot the radiation pattern of the antenna at 2.09 GHz.

pattern(ant,2.09e9)

2 Objects

2-470

Impedance and Radiation Pattern of Custom Discone Antenna

Create and view a discone antenna with specific dimensions.

ant = discone('Height',0.0925,'ConeRadii',[0.666e-3 53.2e-3],...
 'DiscRadius',37.25e-3,'FeedHeight',399.7e-6,'FeedWidth',0.553e-3);
show(ant)

 discone

2-471

Calculate the impedance of the antenna over the frequency span of 500 MHz to 3 GHz and plot the S-
parameters.

impedance(ant,linspace(0.5e9,3e9,51));

2 Objects

2-472

s = sparameters(ant,linspace(0.5e9,3e9,51));
figure;
rfplot(s);

 discone

2-473

Plot the radiation pattern of the antenna at 1.7 GHz.

pattern(ant,1.7e9);

2 Objects

2-474

References
[1] Verma, Saritha, Abhilash Mehta, and Rukhsana Khan. "Analysis of Variation of Various Parameters

on Design of Discone Antenna." Advanced Computational Techniques in Electromagnetics.
Volume 2012, 2012, pp.1-5.

See Also
bicone | cavityCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

 discone

2-475

bicone
Create bicone antenna

Description
The bicone object creates a bicone antenna. A bicone antenna consists of two symmetrical or
asymmetrical cones separated by a small gap. The feed spans the gap and connects both the cones.

Bicone antennas are broadband omnidirectional antennas used for electronic support measure (ESM)
applications. Bicone antennas are often used in electromagnetic interference (EMI) testing for
immunity testing or emissions testing.

Creation
Syntax
ant = bicone
ant = bicone(Name,Value)

2 Objects

2-476

Description

ant = bicone creates a bicone antenna with dimensions for a resonant frequency of 2.3 GHz. The
default bicone has a feedpoint at the apex of the top cone.

ant = bicone(Name,Value) sets properties using one or more name-value pairs. For example,
ant = bicone('Height',1) creates a bicone antenna with a cone of height 1 meter.

Properties
ConeHeight — Vertical height of cones
0.0215 (default) | real-valued scalar | two-element vector

Vertical height of the cones, specified as a real-valued scalar in meters or a two-element vector with
each element unit in meters. A scalar value creates two cones of the same height. The two-element
vector can create two cones of different heights. In the two-element vector, the first element specifies
the height of the top cone, and the second element specifies the height of the bottom cone.
Example: 'ConeHeight',[0.0215 0.0315]
Example: ant.ConeHeight = [0.0215 0.0315]
Data Types: double

NarrowRadius — Radius at apex of cones
0.0013 (default) | real-valued scalar | two-element vector

Radius at the apex of the cones, specified as a real-valued scalar in meters or a two-element vector
with each element unit in meters. A scalar value creates two cones with the same narrow radius. A
two-element vector can create two cones with different narrow radii. In the two-element vector, the
first element specifies the narrow radius of the top cone, and the second element specifies the narrow
radius of the bottom cone.
Example: 'NarrowRadius',[6.3300e-04 0.0546]
Example: ant.NarrowRadius = [6.3300e-04 0.0546]
Data Types: double

BroadRadius — Radius at broad opening of cones
0.00385 (default) | real-valued scalar | two-element vector

Radius at the broad opening of the cones, specified as a real-valued scalar in meters or a two-element
vector with each element unit in meters. A scalar value creates two cones with the same broad
radius. A two-element vector can create two cones of different broad radii. In the two-element vector,
the first element specifies the broad radius of the top cone, and the second element specifies the
broad radius of the bottom cone.
Example: 'BroadRadius',[8.3300e-04 0.0846]
Example: ant.BroadRadius = [8.3300e-04 0.0846]
Data Types: double

FeedHeight — Gap between two cones
3.1980e-04 (default) | real-valued scalar

Gap between the two cones, specified as a real-valued scalar in meters.

 bicone

2-477

Example: 'FeedHeight',0.0034
Example: ant.FeedHeight = 0.0034
Data Types: double

FeedWidth — Width of feed
4.2640e-04 (default) | real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0050
Example: ant.FeedWidth = 0.0050
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

2 Objects

2-478

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
coneangle2size Calculates equivalent cone height, broad radius, and narrow radius for cone
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Bicone Antenna and Radiation Pattern

Create and view a default bicone antenna.

ant = bicone

ant =
 bicone with properties:

 ConeHeight: 0.0215
 NarrowRadius: 0.0013
 BroadRadius: 0.0385
 FeedHeight: 5.0000e-04
 FeedWidth: 1.0000e-03

 bicone

2-479

 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 2.3 GHz.

pattern(ant,2.3e9)

2 Objects

2-480

Impedance of Bicone Antenna with Asymmetrical Cones

Create a bicone antenna with asymmetrical cones.

ant = bicone('NarrowRadius',[2e-3 4e-3],'BroadRadius',...
 [44.7e-3,60e-3],'ConeHeight',[33.7e-3 40e-3],'FeedHeight',...
 1e-3,'FeedWidth',2e-3)

ant =
 bicone with properties:

 ConeHeight: [0.0337 0.0400]
 NarrowRadius: [0.0020 0.0040]
 BroadRadius: [0.0447 0.0600]
 FeedHeight: 1.0000e-03
 FeedWidth: 0.0020
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 bicone

2-481

Calculate the impedance of the antenna over the frequency span of 500 MHz - 5 GHz.

impedance(ant,linspace(0.5e9,5e9,51));

2 Objects

2-482

References
[1] Kudpik, Rapin & Komask Meksamoot, Nipapon Siripon, and Sompol Kosulvit. "Design of a

Compact Biconical Antenna for UWB Applications." 10.1109/ISPACS.2011.6146212.

See Also
cavityCircular | discone

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

 bicone

2-483

waveguideCircular
Create circular waveguide

Description
The waveguideCircular object creates a circular waveguide. A circular waveguide is a hollow tube
of uniform cross section, that confines the electromagnetic wave. This antenna is used in radar and
short and medium distance broadband communication.

Creation

Syntax
ant = waveguideCircular
ant = waveguideCircular(Name,Value)

Description

ant = waveguideCircular creates a circular waveguide with dimensions for an operating
frequency of 8.42 GHz.

2 Objects

2-484

ant = waveguideCircular(Name,Value) sets properties using one or more name-value pairs.
For example, ant = waveguideCircular('Height',1) creates a circular waveguide with a
height of 1 meter.

Properties
Height — Height of circular waveguide
0.0300 (default) | real-valued scalar

Height of the circular waveguide, specified as a real-valued scalar in meters.
Example: 'Height',0.0215
Example: ant.Height = 0.0215
Data Types: double

Radius — Radius of circular waveguide
0.0120 (default) | real-valued scalar

Radius of the circular waveguide, specified as a real-valued scalar in meters.
Example: 'Radius',0.0546
Example: ant.Radius = 0.0546
Data Types: double

FeedHeight — Height of feed
0.0075 (default) | real-valued scalar

Height of the feed, which is equal to the height of the monopole, specified as a real-valued scalar in
meters.
Example: 'FeedHeight',0.0034
Example: ant.FeedHeight = 0.0034
Data Types: double

FeedWidth — Width of feed
0.0040 (default) | real-valued scalar

Width of the feed, which is equal to the width of the monopole, specified as a real-valued scalar in
meters.
Example: 'FeedWidth',0.0050
Example: ant.FeedWidth = 0.0050
Data Types: double

FeedOffset — Vertical distance of feed along Y-axis
0.0100 (default) | real-valued scalar

Vertical distance of the feed along the Y-axis, specified as a real-valued scalar in meters.
Example: 'FeedOffset',0.0050
Example: ant.FeedOffset = 0.0050

 waveguideCircular

2-485

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-486

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Circular Waveguide and Radiation Pattern

Create and view a default circular waveguide.

ant = waveguideCircular

ant =
 waveguideCircular with properties:

 Radius: 0.0120
 Height: 0.0300
 FeedHeight: 0.0075
 FeedWidth: 0.0040
 FeedOffset: 0.0100
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 waveguideCircular

2-487

Plot the radiation pattern of the antenna at 7.42 GHz.

pattern(ant,7.42e9)

2 Objects

2-488

S-Parameters and Impedance of Custom Circular Waveguide

Create a circular waveguide with the following dimensions.

ant=waveguideCircular('Radius',35.7e-3,'Height',200e-3,...
 'Feedwidth',26e-3,'FeedHeight',34.71e-3,'FeedOffset', 42.42e-3);
show(ant);

 waveguideCircular

2-489

Plot the s-parameters and impedance of the waveguide.

s=sparameters(ant,linspace(2.5e9,4e9,45));
rfplot(s);

2 Objects

2-490

figure;
impedance(ant,linspace(2.5e9,4e9,45));

 waveguideCircular

2-491

References
[1] Jadhav, Rohini.P, Vinithkurnar Javnrakash Dongre, Arunkumar Heddallikar. "Design of X-Band

Conical Horn Antenna Using Coaxial Feed and Improved Design Technique for Bandwidth
Enhancement." In International Conference on Computing, Communication, Control, and
Automation (ICCUBEA), 1-6. Pune, India: ICCUBEA 2017

See Also
cavityCircular | waveguide | waveguideSlotted

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

2 Objects

2-492

waveguideSlotted
Create slotted waveguide antenna

Description
The waveguideSlotted object creates a slotted waveguide antenna. There are different types of
slotted waveguides, including longitudinal slots, transversal slots, center inclined slots, inclined slots,
and inclined slots cut into a narrow wall. Slotted waveguide antennas are used in navigation radar as
an array fed by a waveguide.

Creation

Syntax
ant = waveguideSlotted
ant = waveguideSlotted(Name,Value)

Description

ant = waveguideSlotted creates a slotted waveguide antenna on the X-Y plane. The
circumference of the antenna is chosen for an operating frequency of 2.45 GHz.

 waveguideSlotted

2-493

ant = waveguideSlotted(Name,Value) sets properties using one or more name-value pairs. For
example, ant = waveguideSlotted('Height',1) creates a slotted waveguide with a height of 1
meter.

Properties
Length — Length of waveguide (n times lambda)
0.8060 (default) | real-valued scalar

Length of the waveguide (n times lambda), specified as a real-valued scalar in meters. n is the
number of slots in the waveguide.

Example: 'Length',0.760
Example: ant.Length = 0.760
Data Types: double

Width — Width of waveguide (a)
0.0857 (default) | real-valued scalar

Width of the waveguide (a), specified as a real-valued scalar in meters.

2 Objects

2-494

Example: 'Width',0.0840
Example: ant.Width = 0.0840
Data Types: double

Height — Height of waveguide (b)
0.0428 (default) | real-valued scalar

Height of the waveguide (b), specified as a real-valued scalar in meters. Please see image in Width
property.
Example: 'Height',0.0340
Example: ant.Height = 0.0340
Data Types: double

Numslots — Number of slots
8 (default) | scalar integer

Number of slots (n), specified as a scalar integer.
Example: 'Numslots',7
Example: ant.Numslots = 7
Data Types: double

 waveguideSlotted

2-495

Slot — Shape of slots
antenna.Rectangle object (default) | antenna.Circle object | antenna.Polygon object |
antenna.ellipse

Shape of waveguide slot, specified as one of the following objects: antenna.Circle,
antenna.Polygon, antenna.Rectangle, and antenna.Ellipse.
Example: 'Slot',antenna.rectangle['Length',0.035]
Example: ant.Slot = antenna.rectangle['Length',0.035]
Data Types: double

SlotToTop — Distance from closed face edge to top slot center
0.0403 (default) | real-valued scalar

Distance from the closed face edge to the top slot center, specified as a real-valued scalar in meters.
Example: 'SlotToTop',0.0503
Example: ant.SlotToTop = 0.0503
Data Types: double

SlotSpacing — Space between centers of two adjacent slots
0.0806 (default) | real-valued scalar

Space between the centers of two adjacent slots, specified as a real-valued scalar in meters.
Example: 'SlotSpacing',0.0906
Example: ant.SlotSpacing = 0.0906
Data Types: double

SlotOffset — Slot displacement from centreline of width of waveguide to center of slot
0.0123 (default) | real-valued scalar | vector

Slot displacement from the centreline of the width of the waveguide to the center of the slot,
specified as a real-valued scalar or vector in meters.

Note If SlotOffset is a vector, it can be the size of 1-by-n where, n < NumSlots.

Example: 'SlotOffset',0.0560
Example: ant.SlotOffset = 0.0560
Data Types: double

SlotAngle — Slot angle
0 (default) | real-valued scalar | vector

Slot angle, specified as a real-valued scalar in degrees or a vector with each element unit in degrees.
In slotted waveguide the slots are in pairs. You use a vector when you want one slot in the pair to be
tilted at a different angle form the other. It varies from - 180o to 180o.

Note If SlotAngle is a vector, it can be the size of 1-by-n where, n <= NumSlots.

2 Objects

2-496

Example: 'SlotAngle',[20 10]
Example: ant.SlotAngle = [20 10]
Data Types: double

ClosedWaveguide — Plate or cover to close waveguide
0 (default) | 1

Plate to close the open-ended side, specified as 0 for open waveguide and 1 for closed waveguide.
Example: 'ClosedWaveguide',1
Example: ant.ClosedWaveguide = 1
Data Types: double

FeedHeight — Height of feed
0.0310 (default) | real-valued scalar

Height of the feed, specified as a real-valued scalar in meters.
Example: 'FeedHeight',0.0210
Example: ant.FeedHeight = 0.0210
Data Types: double

FeedWidth — Width of feed
0.0020 (default) | real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0300
Example: ant.FeedWidth = 0.0300
Data Types: double

FeedOffset — Signed distances from origin
[-0.3627 0] (default) | two-element vector

Signed distances from the origin measured along the length and width of the waveguide, specified as
a two-element vector with each element in meters.
Example: 'FeedOffset',[-0.3627 0]
Example: ant.FeedOffset = [-0.3627 0]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

 waveguideSlotted

2-497

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure

2 Objects

2-498

meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Slotted Waveguide Antenna and Radiation Pattern

Create and view a slotted waveguide antenna with default property values.

ant = waveguideSlotted

ant =
 waveguideSlotted with properties:

 Length: 0.8060
 Width: 0.0857
 Height: 0.0428
 NumSlots: 8
 Slot: [1x1 antenna.Rectangle]
 SlotToTop: 0.0403
 SlotSpacing: 0.0806
 SlotOffset: 0.0123
 SlotAngle: 0
 FeedWidth: 0.0020
 FeedHeight: 0.0310
 FeedOffset: [-0.3627 0]
 ClosedWaveguide: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 waveguideSlotted

2-499

Plot the radiation pattern of the antenna at 2.45 GHz.

pattern(ant, 2.45e9)

2 Objects

2-500

Impedance and S-Parameters of Custom Slotted Waveguide Antenna

Create a slotted waveguide antenna with the following dimensions.

 ant = waveguideSlotted('Length',806e-3,'Width',94e-3, 'NumSlots',8,...
 'Height',44e-3,'Slot',antenna.Rectangle('Length',53e-3,'Width',6.5e-3),'SlotToTop',40.3e-3,...
 'SlotSpacing',80.6e-3,'SlotOffset',10e-3,'FeedHeight',31e-3, ...
 'FeedOffset',[-362.7e-3 0],'FeedWidth',2e-3);
show (ant)

 waveguideSlotted

2-501

Plot impedance and S-parameters from 2.2 GHz to 2.8 GHz.

freq = 2.2e9:0.025e9:2.8e9;
figure;
impedance(ant,freq);

2 Objects

2-502

s = sparameters(ant,freq);
figure;
rfplot(s);

 waveguideSlotted

2-503

References
[1] Perovic, Una. " Investigation of Rectangular, Unidirectional, Horizontally Polarized Waveguide

Antenna with Longitudinal Slotted Arrays Operating at 2.45 GHz".

See Also
cavityCircular | waveguide | waveguideCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

2 Objects

2-504

hornConical
Create conical horn antenna

Description
The hornConical object creates a waveguide shaped like a cone to direct radio waves in a beam.
This type of horn is widely used as feed element for large radio astronomy telescopes, satellite
tracking, and communication dishes.

 hornConical

2-505

Creation

Syntax
ant = hornConical
ant = hornConical(Name,Value)

Description

ant = hornConical creates a conical horn antenna with dimensions for an operating frequency of
7.58 GHz.

ant = hornConical(Name,Value) sets properties using one or more name-value pairs. For
example, ant = hornConical('Radius',1) creates a conical horn antenna with a radius of 1
meter.

Properties
Radius — Radius of waveguide
0.0120 (default) | real-valued scalar

Radius of the waveguide, specified as a real-valued scalar in meters.
Example: 'Radius',0.760
Example: ant.Radius = 0.760
Data Types: double

WaveguideHeight — Height of waveguide
0.0300 (default) | real-valued scalar

Height of the waveguide, specified as a real-valued scalar in meters.
Example: 'WaveguideHeight',0.0340
Example: ant.WaveguideHeight = 0.0340
Data Types: double

FeedHeight — Height of feed
0.0075 (default) | real-valued scalar

Height of the feed, specified as a real-valued scalar in meters.
Example: 'FeedHeight',0.0085
Example: ant.FeedHeight = 0.0085
Data Types: double

FeedWidth — Width of feed
0.0030 (default) | real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0200

2 Objects

2-506

Example: ant.FeedWidth = 0.0200
Data Types: double

FeedOffset — Signed distance along Y-axis
0.0100 (default) | real-valued scalar

Signed distances along the Y-axis, specified as a real-valued scalar in meters.
Example: 'FeedOffset',0.03627
Example: ant.FeedOffset = 0.3627
Data Types: double

ConeHeight — Height of cone
0.0348 (default) | real-valued scalar

Height of the cone, specified as a real-valued scalar in meters.
Example: 'ConeHeight',0.0540
Example: ant.ConeHeight = 0.0540
Data Types: double

ApertureRadius — Radius of cone aperture
0.0350 (default) | real-valued scalar

Radius of the cone aperture, specified as a real-valued scalar in meters.
Example: 'ApertureRadius',0.0760
Example: ant.ApertureRadius = 0.0760
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

 hornConical

2-507

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

2 Objects

2-508

Default Conical Horn and Radiation Pattern

Create and view a default conical horn antenna.

ant = hornConical

ant =
 hornConical with properties:

 Radius: 0.0120
 WaveguideHeight: 0.0300
 FeedHeight: 0.0075
 FeedWidth: 0.0030
 FeedOffset: 0.0100
 ConeHeight: 0.0348
 ApertureRadius: 0.0350
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 7.58 GHz.

pattern(ant,7.58e9)

 hornConical

2-509

Impedance and S-Parameters of Custom Conical Horn Antenna

Create a conical horn antenna with the following dimensions.

ant=hornConical('Radius',35.71e-3,'WaveguideHeight',200e-3,...
 'Feedwidth',26e-3,'FeedHeight',34.71e-3,'FeedOffset',42.42e-3,...
 'ConeHeight',130e-3,'ApertureRadius',62.5e-3);
show(ant);

2 Objects

2-510

Plot the s-parameters and the impedance of the antenna.

s=sparameters(ant,2.5e9:20e6:4e9);
rfplot(s);

 hornConical

2-511

figure;
impedance(ant,2.5e9,20e6:4e9);

2 Objects

2-512

References
[1] Jadhav, Rohini.P, Vinithkurnar Javnrakash Dongre, Arunkumar Heddallikar. "Design of X-Band

Conical Horn Antenna Using Coaxial Feed and Improved Design Technique for Bandwidth
Enhancement." In International Conference on Computing, Communication, Control, and
Automation (ICCUBEA), 1-6. Pune, India: ICCUBEA 2017

See Also
cavityCircular | horn | hornangle2size | waveguide

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

 hornConical

2-513

gregorian
Create Gregorian antenna

Description
The gregorian object creates a horn conical fed Gregorian antenna. A Gregorian antenna is a
parabolic antenna. In this antenna, the feed antenna is mounted at or behind the surface of the main
parabolic reflector and aimed at the subreflector. This antenna is used in radio telescopes and
communication satellites. For more information see, “Architecture of Gregorian Antenna” on page 2-
518.

Creation
Syntax
ant = gregorian
ant = gregorian(Name,Value)

Description

ant = gregorian creates a horn conical fed Gregorian antenna with a default operating frequency
of 18.48 GHz. This antenna gives maximum gain when operated at 18.3 GHz.

ant = gregorian(Name,Value) sets properties using one or more name-value pairs. For example,
ant = gregorian('FocalLength',[0.4 0.22]) creates a Gregorian antenna with the main
reflector of focal length 0.4 m and the subreflector of focal length 0.22 m.

Properties
Exciter — Antenna type used as exciter
hornConical (default) | antenna object

2 Objects

2-514

Antenna type used as exciter, specified as an antenna object.
Example: 'Exciter',dipole
Example: ant.Exciter = dipole

Radius — Radius of main and subreflector
[0.3175 0.0330] (default) | two-element vector

Radius of the main and subreflector, specified as a two-element vector with each element unit in
meters. The first element specifies the radius of the main reflector, and the second element specifies
the radius of the subreflector.
Example: 'Radius',[0.4 0.2]
Example: ant.Radius = [0.4 0.2]
Data Types: double

FocalLength — Focal length of main and subreflector
[0.2536 0.1416] (default) | two-element vector

Focal length of the main and subreflector, specified as a two-element vector with each element unit in
meters. The first element specifies the focal length of the main reflector, and the second element
specifies the focal length of the subreflector.
Example: 'FocalLength',[0.35 0.2]
Example: ant.FocalLength = [0.35 0.2]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

 gregorian

2-515

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

2 Objects

2-516

Default Gregorian Antenna and Radiation Pattern

Create and view a default Gregorian antenna.

ant = gregorian

ant =
 gregorian with properties:

 Exciter: [1×1 hornConical]
 Radius: [0.3175 0.0330]
 FocalLength: [0.2536 0.1416]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1×1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 18.48 GHz.

pattern(ant,18.48e9)

 gregorian

2-517

More About
Parabolic Reflector Antennas

A typical parabolic antenna consists of a parabolic reflector with a small feed antenna at its focus.
Parabolic reflectors used in dish antennas have a large curvature and short focal length and the focal
point is located near the mouth of the dish, to reduce the length of the supports required to hold the
feed structure. In more complex designs, such as the cassegrain antenna, a sub reflector is used to
direct the energy into the parabolic reflector from a feed antenna located away from the primary
focal point. Such type of antennas can be used in satellite communications and Astronomy and other
emerging modes of communications

Architecture of Gregorian Antenna

Gregorian antenna consists of three structures:

• Primary parabolic reflector
• Hyperbolic convex subreflector
• Exciter element

2 Objects

2-518

Focus of the main reflector and the near focus of the subreflector in the region between the two
dishes. Gregorian antenna forms a shorter focal length for the main dish.

See Also
cassegrain | hornConical | reflectorParabolic

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

 gregorian

2-519

cassegrain
Create Cassegrain antenna

Description
The cassegrain object creates a Cassegrain antenna. A Cassegrain antenna is a parabolic antenna
using a dual reflector system. In this antenna, the feed antenna is mounted at or behind the surface of
the main parabolic reflector and aimed at the secondary reflector. For more information see,
“Architecture of Cassegrain Antenna” on page 2-525.

Cassegrain antennas are used in applications such as satellite ground-based systems.

Creation
Syntax
ant = cassegrain
ant = cassegrain(Name,Value)

Description

ant = cassegrain creates a conical horn fed Cassegrain antenna with a resonating frequency of
18.51 GHz. This antenna gives maximum gain when operated at 18 GHz.

ant = cassegrain(Name,Value) sets properties using one or more name-value pairs. For
example, ant = cassegrain('Radius',[0.4 0.22]) creates a Cassegrain antenna with the
main reflector with radius 0.4 m and the secondary reflector with radius 0.22 m.

Properties
Exciter — Antenna type used as exciter
hornConical (default) | antenna object

2 Objects

2-520

Antenna type used as exciter, specified as an antenna object.
Example: 'Exciter',dipole
Example: ant.Exciter = dipole

Radius — Radius of main and subreflector
[0.3175 0.0330] (default) | two-element vector

Radius of the main and subreflector, specified as a two-element vector with each element unit in
meters. The first element specifies the radius of the main reflector, and the second element specifies
the radius of the subreflector.
Example: 'Radius',[0.4 0.2]
Example: ant.Radius = [0.4 0.2]
Data Types: double

FocalLength — Focal length of main and subreflector
[0.2536 0.1416] (default) | two-element vector

Focal length of the main and subreflector, specified as a two-element vector with each element unit in
meters. The first element specifies the focal length of the main reflector and the second element
specifies the focal length of the subreflector.
Example: 'FocalLength',[0.35 0.2]
Example: ant.FocalLength = [0.35 0.2]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

 cassegrain

2-521

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

2 Objects

2-522

Default Cassegrain Antenna and Radiation Pattern

Create and view a Cassegrain antenna.

ant = cassegrain

ant =
 cassegrain with properties:

 Exciter: [1x1 hornConical]
 Radius: [0.3175 0.0330]
 FocalLength: [0.2536 0.1416]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 18.3 GHz.

mesh(ant,'maxEdgeLength',14e-3)

 cassegrain

2-523

figure;
pattern(ant,18.3e9)

2 Objects

2-524

More About
Parabolic Reflector Antennas

A typical parabolic antenna consists of a parabolic reflector with a small feed antenna at its focus.
Parabolic reflectors used in dish antennas have a large curvature and short focal length and the focal
point is located near the mouth of the dish, to reduce the length of the supports required to hold the
feed structure. In more complex designs, such as the cassegrain antenna, a sub reflector is used to
direct the energy into the parabolic reflector from a feed antenna located away from the primary
focal point. Cassegrain provides an option to increase focal length, reducing side lobes. Such type of
antennas can be used in satellite communications and Astronomy and other emerging modes of
communications

Architecture of Cassegrain Antenna

Cassegrain antenna consists of three structures:

• Primary parabolic reflector
• Hyperbolic concave subreflector
• Exciter element

 cassegrain

2-525

Focus of the main reflector and the near focus of the subreflector coincides. The energy is
transmitted from the subreflector to the primary parabolic reflector. The parabolic reflector converts
a spherical wavefront into a plane wavefront as the energy directed towards it appears to be coming
from focus.

Cassegrain Antenna in Receive Mode

In the receive mode, consider that energy in the form of parallel waves is incident up on the reflector
system. This energy is intercepted by the main reflector, a large concave surface,and reflected
towards the subreflector. The convex surface of the subreflector collects this energy and directs it
towards the vertex of the main dish. If the rays directed towards this main dish are parallel, then the
main reflector is parabolic and the subreflector is hyperbolic and the rays will focus on a single point.
You then place the receiver at this focusing point.

Cassegrain Antenna in Transmit Mode

In the transmit mode, repeat the experiment to find the focusing point as in the receive mode. Place
the feed at the focusing point. The feed is usually small and the sub reflector is in the far-field region
of the feed. The size of the subreflector is large enough that it intercepts most of the radiation from
the feed point. Because of the geometry and the shape of the main reflector and the subreflector the
rays from the main dish are usually parallel.

References
[1] Dandu, Obulesu. "Optimized Design of Axillary Symmetric Cassegrain Reflector Antenna Using

Iterative Local Search Algorithm"

[2] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

See Also
gregorian | hornConical | reflectorParabolic

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

2 Objects

2-526

quadCustom
Create Yagi-Uda custom array antenna

Description
The quadCustom object creates a Yagi-Uda custom array along the Z-axis.

Creation
Syntax
ant = quadCustom

 quadCustom

2-527

ant = quadCustom(Name,Value)

Description

ant = quadCustom creates a half-wavelength Yagi-Uda custom array antenna along the Z-axis. The
default antenna is excited using a dipole and consists of three directors and one reflector. The default
dimensions are chosen for an operating frequency of 2.4 GHz.

ant = quadCustom(Name,Value) sets properties using one or more name-value pairs. For
example, ant = quadCustom('Exciter',dipoleFolded) creates a Yagi-Uda custom array
antenna with a folded dipole antenna as the exciter.

Properties
Exciter — Antenna type used as exciter
dipole (default) | antenna object

Antenna type used as an exciter, specified as a dipoleFolded, biquad, dipole, or loopCircular
antenna object. This quadCustom supports a single exciter.
Example: 'Exciter',dipoleFolded
Example: ant.Exciter = dipoleFolded

Director — Antenna type or antenna shape used as director elements
array of three dipole antennas (default) | cell array of one or more antenna objects

Antenna type or antenna shape used as director elements, specified as a cell array consisting of one
or more of the following antennas: dipole, dipoleVee, biquad, loopRectangular,
loopCircular, antenna.Polygon, antenna.Circle, or antenna.Rectangle. You can use
single or multiple antenna elements as directors.
Example: d = dipoleVee; ant = quadCustom('Director',{d d d d}). Yagi-Uda custom
array antenna uses V-dipole as its directors.
Example: d = dipoleVee; ant = quadCustom; ant.Director= {d d d d} . Yagi-Uda
custom array antenna uses V-dipole as its directors.

DirectorSpacing — Spacing between director elements
0.0423 (default) | real-valued scalar | vector

Spacing between the director elements, specified as a real-valued scalar in meters or a vector with
each element unit in meters. You can specify a scalar value for equal spacing between the elements
and vector value for unequal spacing between the elements. If you use a vector, the first value is the
distance between the exciter and the first director element.
Example: 'DirectorSpacing',[0.234 0.324]
Example: ant.DirectorSpacing = [0.234 0.324]
Data Types: double

Reflector — Antenna type used as reflector elements
dipole (default) | cell array of one or more antenna objects

Antenna type used as reflector elements, specified as a cell array. You can use single or multiple
antenna elements as reflectors.

2 Objects

2-528

Example: d = dipoleVee;ant = quadCustom('Reflector',{d d d d}) Yagi-Uda custom
array antenna uses V- dipole as its reflectors.
Example: d = dipoleVee;ant = quadCustom;ant.Reflector={d d d d} Yagi-Uda custom
array antenna uses V- dipole as its reflectors.

ReflectorSpacing — Spacing between reflector elements
0.0423 (default) | real-valued scalar | vector

Spacing between the reflector elements, specified as a real-valued scalar in meters or a vector with
each element unit in meters. You can specify a scalar value for equal spacing between the elements
or a vector value for unequal spacing between the elements. If you use a vector, the first value is the
distance between the exciter and the first reflector element.
Example: 'ReflectorSpacing',[0.234 0.324]
Example: ant.ReflectorSpacing = [0.234 0.324]
Data Types: double

BoomLength — Length of boom
0.1800 (default) | real-valued scalar

Length of the boom, specified as a real-valued scalar in meters.
Example: 'BoomLength',0.234
Example: ant.BoomLength = 0.234
Data Types: double

BoomWidth — Width of boom
0.0020 (default) | real-valued scalar

Width of the boom, specified as a real-valued scalar in meters.
Example: 'BoomWidth',0.00324
Example: ant.BoomWidth = 0.00324
Data Types: double

BoomOffset — Signed distance from center of antenna elements
[0 0.0050 0.0450] (default) | three-element vector

Signed distance from center of antenna elements, specified as a three-element vector with each
element unit in meters.
Example: 'BoomOffset',[0 0.0060 0.0350]
Example: ant.BoomOffset = [0 0.0060 0.0350]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.

 quadCustom

2-529

Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface

2 Objects

2-530

design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Custom Yagi-Uda Array Antenna (quadCustom) and Radiation Pattern

Create and view a custom Yagi-Uda array antenna.

ant = quadCustom

ant =
 quadCustom with properties:

 Exciter: [1x1 dipole]
 Director: {[1x1 dipole] [1x1 dipole] [1x1 dipole]}
 DirectorSpacing: 0.0423
 Reflector: {[1x1 dipole]}
 ReflectorSpacing: 0.0308
 BoomLength: 0.1800
 BoomWidth: 0.0020
 BoomOffset: [0 0.0050 0.0450]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 quadCustom

2-531

Plot the radiation pattern of the antenna at 2.4 GHz.

pattern(ant,2.4e9)

2 Objects

2-532

Custom Yagi-Uda Array Antenna with Seven Directors

Create the default quadCustom, change the number of directors to seven, and view the structure.

 ant = design(dipole,2.4e9);
 ant.Tilt = 90

ant =
 dipole with properties:

 Length: 0.0587
 Width: 0.0012
 FeedOffset: 0
 Tilt: 90
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 ant.TiltAxis = [0 1 0]

ant =
 dipole with properties:

 Length: 0.0587
 Width: 0.0012

 quadCustom

2-533

 FeedOffset: 0
 Tilt: 90
 TiltAxis: [0 1 0]
 Load: [1x1 lumpedElement]

 quad_ant = quadCustom('Director',{ant,ant,ant,ant,ant,ant,ant})

quad_ant =
 quadCustom with properties:

 Exciter: [1x1 dipole]
 Director: {1x7 cell}
 DirectorSpacing: 0.0423
 Reflector: {[1x1 dipole]}
 ReflectorSpacing: 0.0308
 BoomLength: 0.1800
 BoomWidth: 0.0020
 BoomOffset: [0 0.0050 0.0450]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 show(quad_ant)

Plot the radiation pattern of the antenna at the frequency 2.4 GHz.

pattern(quad_ant,2.4e9)

2 Objects

2-534

References
[1] Bankey, Vinay, and N.Anvesh Kumar. "Design of a Yagi-Uda Antenna with Gain and Bandwidth

Enhancement for Wi-Fi and Wi-Max Applications." International Journal of Antennas. Vol.2,
Number 1, 2017

See Also
cavityCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

 quadCustom

2-535

antenna.Ellipse
Create ellipse centered at origin on X-Y plane

Description
Use the antenna.Ellipse object to create an ellipse centered at the origin on the X-Y plane.

Creation

Syntax
ellipse = antenna.Ellipse
ellipse = antenna.Ellipse(Name,Value)

Description

ellipse = antenna.Ellipse creates an ellipse centered at the origin on the X-Y plane.

ellipse = antenna.Ellipse(Name,Value) sets properties using one or more name-value pair
arguments. For example, ellipse = antenna.Ellipse('MajorAxis',2,'Minoraxis',0.800)
creates an ellipse with a longest diameter of 2 m and smallest diameter of 0.8 m. Enclose each
property name in quotes.

Properties
Name — Name of ellipse
'myEllipse' (default) | character vector

Name of ellipse, specified as a character vector.
Example: 'Name','ellipse1'
Example: ellipse.Name= 'ellipse1'
Data Types: char | string

Center — Cartesian coordinates of center of ellipse
[0 0] (default) | two-element vector

Cartesian coordinates of center of ellipse, specified as a two-element vector with each element
measured in meters.
Example: 'Center',[0.006 0.006]
Example: Ellipse.Center= [0.006 0.006]
Data Types: double

Major axis — Major axis of ellipse
1 (default) | scalar

2 Objects

2-536

Major axis of ellipse, specified as a scalar in meters.
Example: 'MajorAxis',1
Example: ellipse.MajorAxis= 2
Data Types: double

Minor axis — Minor axis of ellipse
0.5 (default) | scalar

Minor axis of the ellipse, specified as a scalar in meters.
Example: 'MinorAxis',0.9
Example: ellipse.MinorAxis= 0.8
Data Types: double

NumPoints — Number of discretization points on circumference
30 (default) | scalar

Number of discretization points on circumference, specified as a scalar.
Example: 'NumPoints',28
Example: ellipse.NumPoints= 60
Data Types: double

Object Functions
add Boolean unite operation on two shapes
subtract Boolean subtraction operation on two shapes
intersect Boolean intersection operation on two shapes
plus Shape1 + Shape2
minus Shape1 - Shape2
and Shape1 & Shape2
area Calculate area of shape in square meters
show Display antenna or array structure; display shape as filled patch
plot Plot boundary of shape
mesh Mesh properties of metal or dielectric antenna or array structure
rotate Rotate shape about axis and angle
rotateX Rotate shape about X-axis and angle
rotateY Rotate shape about Y-axis and angle
rotateZ Rotate shape about Z-axis and angle
translate Move shape to new location
scale Change the size of the shape by a fixed amount
removeHoles Remove holes from shape
removeSlivers Remove sliver outliers from boundary of shape

Examples

Create an Ellipse with Default Properties

Create ellipse using antenna.Ellipse.

 antenna.Ellipse

2-537

e1 = antenna.Ellipse

e1 =
 Ellipse with properties:

 Name: 'myEllipse'
 Center: [0 0]
 MajorAxis: 1
 MinorAxis: 0.5000
 NumPoints: 30

View the antenna.Ellipse object using the show function.

show(e1)

Create an Ellipse with Specified Properties

Create an ellipse with major axis of 2 m and a minor axis of 0.8 m.

e2 = antenna.Ellipse('MajorAxis',2,'MinorAxis',0.8)

e2 =
 Ellipse with properties:

2 Objects

2-538

 Name: 'myEllipse'
 Center: [0 0]
 MajorAxis: 2
 MinorAxis: 0.8000
 NumPoints: 30

Create a mesh with a Maximum edge Length of 20 cm.

mesh(e2,'MaxEdgeLength',2e-1)

Subtract Two Shapes

Create an ellipse with default properties.

 e3 = antenna.Ellipse;

Create a rectangle with a length of 0.1 m and width of 0.2 m.

 r = antenna.Rectangle('Length',0.1,'Width',0.2);

Subtract the two shapes using the minus operator.

 s = e3-r;

Mesh the subtracted shape with a maximum edge length of 1 m.

 antenna.Ellipse

2-539

 mesh(s,1)

See Also
antenna.Circle | antenna.Polygon | antenna.Rectangle

Introduced in R2020a

2 Objects

2-540

hornConicalCorrugated
Create conical corrugated-horn antenna

Description
The hornConicalCorrugated object creates a conical corrugated-horn antenna, with grooves
covering the inner surface of the cone. These antennas are widely used as feed horns for dish
reflector antennas as they have smaller side lobes and low cross-polarization level.

 hornConicalCorrugated

2-541

Creation

Syntax
ant = hornConicalCorrugated
ant = hornConicalCorrugated(Name,Value)

Description

ant = hornConicalCorrugated creates a corrugated conical-horn antenna object with default
dimensions for an operating frequency of 9.54 GHz.

ant = hornConicalCorrugated(Name,Value) sets properties using one or more name-value
pairs. For example, ant = hornConicalCorrugated('Radius',1), creates a conical corrugated-
horn antenna with a radius of 1 meter.

Properties
Radius — Radius of waveguide
0.011 (default) | real-valued scalar

Radius of the waveguide, specified as a real-valued scalar in meters.
Example: 'Radius',0.760
Example: ant.Radius = 0.760
Data Types: double

WaveguideHeight — Height of waveguide
0.0300 (default) | real-valued scalar

Height of the waveguide, specified as a real-valued scalar in meters.
Example: 'WaveguideHeight',0.0340
Example: ant.WaveguideHeight = 0.0340
Data Types: double

FeedHeight — Height of feed
0.0075 (default) | real-valued scalar

Height of the feed, specified as a real-valued scalar in meters.
Example: 'FeedHeight',0.0085
Example: ant.FeedHeight = 0.0085
Data Types: double

FeedWidth — Width of feed
0.0040 (default) | real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0200

2 Objects

2-542

Example: ant.FeedWidth = 0.0200
Data Types: double

FeedOffset — Signed distance along Y-axis
0.0075 (default) | real-valued scalar

Signed distance of the feed along the Y-axis, specified as a real-valued scalar in meters.
Example: 'FeedOffset',0.03627
Example: ant.FeedOffset = 0.3627
Data Types: double

ConeHeight — Height of cone
0.1 (default) | real-valued scalar

Height of the cone, specified as a real-valued scalar in meters.
Example: 'ConeHeight',0.0540
Example: ant.ConeHeight = 0.0540
Data Types: double

ApertureRadius — Radius of cone aperture
0.0760 (default) | real-valued scalar

Radius of the cone aperture, specified as a real-valued scalar in meters.
Example: 'ApertureRadius',0.0560
Example: ant.ApertureRadius = 0.0790
Data Types: double

Pitch — Distance between two successive corrugations
0.0069 (default) | real-valued scalar

Distance between two successive corrugations, specified as a real-valued scalar in meters.
Example: 'Pitch',0.0060
Example: ant.Pitch = 0.0090
Data Types: double

FirstCorrugatedDistance — Distance of first corrugation from waveguide
0.0291 (default) | real-valued scalar

Distance of first corrugation from waveguide, specified as a real-valued scalar in meters.
Example: 'FirstCorrugatedDistance',0.0360
Example: ant.FirstCorrugatedDistance = 0.0190
Data Types: double

CorrugateWidth — Corrugation width
0.0039 (default) | real-valued scalar

Corrugation width, specified as a real-valued scalar in meters.

 hornConicalCorrugated

2-543

Example: 'CorrugateWidth',0.0058
Example: ant.CorrugateWidth = 0.0019
Data Types: double

CorrugateDepth — Corrugation depth
0.0072 (default) | real-valued scalar

Corrugation depth, specified as a real-valued scalar in meters.
Example: 'CorrugateDepth',0.0560
Example: ant.CorrugateDepth = 0.0790
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

2 Objects

2-544

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create a Conical Corrugated-Horn Antenna

Create a conical corrugated-horn antenna object with the cone height set to 0.09 m

ant = hornConicalCorrugated('ConeHeight',0.09);
show(ant)

 hornConicalCorrugated

2-545

Plot the radiation pattern of the antenna at 9.62 GHz.

figure
pattern(ant,9.62e9)

2 Objects

2-546

References
[1] Jadhav, Rohini.P, Vinothkurnar Javnrakash Dongre, Arunkumar Heddallikar. "Design of X-Band

Conical Horn Antenna Using Coaxial Feed and Improved Design Technique for Bandwidth
Enhancement". In International Conference on Computing, Communication, Control, and
Automation (ICCUBEA), 1-6. Pune, India: ICCUBEA 2017.

See Also
cavityCircular | horn | hornConical | hornangle2size | waveguide

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

 hornConicalCorrugated

2-547

customAntennaStl
Create custom antenna 3-D geometry using STL files

Description
The customAntennaStl object creates a 3-D antenna geometry and mesh using Stereolithography
(STL) files. The STL files are used to define any 3-D surface in the form of points and triangles.

Creation

Syntax
ca = customAntennaStl

2 Objects

2-548

Description

ca = customAntennaStl returns a 3D antenna represented by a custom geometry, based on the
STL file specified.

Properties
FileName — Name the STL file
'[]' (default) | character vector

Name of the STL file where the structure resides, specified as character vector.
Example: antenna = customAntennaStl('FileName','plate.stl')
Example: antenna = customAntennaStl; antenna.FileName = 'plate.stl'
Data Types: char

Units — Units used in STL file
'm' (default) | 'mm' | 'cm' | 'um' | 'ft' | 'in' | character vector

Units used in STL file, specified as a character vector.
Example: 'Units','mm'
Data Types: char

FeedLocation — Antenna feed location in Cartesian coordinates
[] (default) | three-element real vector

Antenna feed location in Cartesian coordinates, specified as a three-element real vector. The three-
element vector are the X-, Y-, and Z-coordinates, respectively.
Example: 'FeedLocation', [0 0.2 0]
Data Types: double

AmplitudeTaper — Excitation amplitude of antenna elements
1 (default) | scalar double

Excitation amplitude of antenna elements, specified as scalar double.
Example: 'AmplitudeTaper','1.8'
Data Types: double

PhaseShift — Phase shift for antenna elements
0 (default) | scalar

Phase shift for the antenna elements, specified as a scalar in degrees.
Example: 'PhaseShift',10
Data Types: double

UseFileAsMesh — Use stl file as mesh
0 (default) | 1

Use the STL file directly as a mesh for analysis. The value can be either 0 or 1.

 customAntennaStl

2-549

Example: 'UseFileAsMesh',1
Data Types: logical

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
createFeed Create feed location for customAntennaStl object
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface

2 Objects

2-550

current Current distribution on metal or dielectric antenna or array surface
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays

Examples

Create and Display Custom 3-D Antenna

Create a custom 3-D antenna using customAntennaStl object.

c = customAntennaStl('Filename','plateMesh.stl','Units','m');

Create antenna feed and calculate the antenna impedance at 110 GHz.

c.createFeed([0,0,0],1);
Z = impedance(c,110e6)

Z = 0.0287 + 34.3704i

disp(c)

 customAntennaStl with properties:

 FileName: 'plateMesh.stl'
 Units: 'm'
 FeedLocation: [0 0 0]
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Display the structure of custom 3-D antenna.

show(c)

 customAntennaStl

2-551

Create Antenna Feed in Custom Antenna STL Using Command Line Interface

Create a customAntennaStl object using the specified STL file.

ant = customAntennaStl

ant =
 customAntennaStl with properties:

 FileName: []
 Units: 'm'
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

ant.FileName ='patchMicrostrip_ColumnFeed.stl'

ant =
 customAntennaStl with properties:

 FileName: 'patchMicrostrip_ColumnFeed.stl'

2 Objects

2-552

 Units: 'm'
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Specify FeedLocation and NumEdges in the createFeed function. The edges are selected based
on distance between feed location and midpoints of the edges. Edges can be single feed or a closed
polygon.

ant.createFeed([-0.018750000000000 0 0],8)
show (ant)

Plot the current distribution at 1.75 GHz.

figure
current(ant,1.75e9,'Scale','log')

 customAntennaStl

2-553

Calculate the impedance at 1.75 GHz.

z = impedance(ant,1.75e9)

z = 85.7298 - 52.7332i

Create Antenna Feed Using UI Figure Window

Create a customAntennaStl object.

ant= customAntennaStl;

Import the STL files.

ant.FileName = 'patchMicrostrip_ColumnFeed.stl';

Create the antenna feed using UI figure window.

createFeed(ant);

2 Objects

2-554

The UI figure window consists of two panes, the Slice Antenna panel and the Add Feed pane.

 customAntennaStl

2-555

Click the Slicer Mode, then click YZ to select that as the plane along which to slice your antenna.

Select the region you want to hide and then click Hide to hide the selected region.

2 Objects

2-556

Repeat the process until you reach the region of interest.

 customAntennaStl

2-557

Select Select a Feeding Edge or Polygon under the Add Feed pane to select the desired feeding
edge or feeding polygon.

Select the edges of the column that forms a closed polygon. The selected edges must be connected to
other edges, else the UI figure window will display an error.

2 Objects

2-558

Click OK to define the selected edges as feeding edges and the structure with the feed is displayed.

 customAntennaStl

2-559

The FeedLocation is displayed.

Verify the location of the antenna feed in the commandline.

ant

ant =
 customAntennaStl with properties:

 FileName: 'patchMicrostrip_ColumnFeed.stl'
 Units: 'm'
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

2 Objects

2-560

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

See Also
customAntennaGeometry | customAntennaMesh | platform

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

 customAntennaStl

2-561

monocone
Create monocone antenna on circular ground plane

Description
The monocone object creates a monocone antenna on a circular ground plane. A classical monocone
antenna consists of a cone and a ground plane. To increase the bandwidth of the antenna, you can
modify the antenna by merging the cone with a circular cylinder. By default, the monocone object
creates the modified version.

Create a classical monocone antenna (without the cylinder on top) using one of these methods:

• Set the height of the antenna to equal the sum of the cone height and the feed height.
• Set the cone height to equal half of the difference between the total height and the feed height.

Then set the radius at the aperture to twice the radius at the junction.

Creation

Syntax
ant = monocone
ant = monocone(Name,Value)

2 Objects

2-562

Description

ant = monocone creates a monocone antenna with the feedpoint at the center of the ground plane.
The default dimensions are for a resonant frequency of 3.94 GHz.

ant = monocone(Name,Value) sets properties using one or more name-value pairs. For example,
ant = monocone('Height',0.0560) creates a monocone antenna with a total height of 0.0560
meters.

Properties
Radii — Antenna radii
[5.0000e-04 0.0110 0.0110] (default) | three-element real vector

Antenna radii, specified as a three-element real vector with each element unit in meters.

• The first element represents the narrow radius of the cone.
• The second element represents the radius at the junction of the cone and the cylinder.
• The third element represents the radius at the top of the cylinder.

Example: 'Radii',[6.3300e-04 0.0546 0.0220]
Example: ant.Radii = [6.3300e-04 0.0546 0.0220]
Data Types: double

Height — Total height of antenna
0.0250 (default) | positive scalar

Total height of the antenna from the ground plane to the aperture of the antenna, specified as a
positive scalar in meters.
Example: 'Height',0.0560
Example: ant.Height = 0.0560
Data Types: double

ConeHeight — Vertical height of cone
0.0115 (default) | positive scalar

Vertical height of the cone from the apex of the cone to the junction of the cone and the cylinder,
specified as a positive scalar in meters.
Example: 'ConeHeight',0.02250
Example: ant.ConeHeight = 0.02250
Data Types: double

FeedHeight — Gap between cone and ground plane
5.0000e-04 (default) | positive scalar

Gap between the cone and the ground plane, specified as a positive scalar in meters.
Example: 'FeedHeight',0.0034
Example: ant.FeedHeight = 0.0034

 monocone

2-563

Data Types: double

FeedWidth — Width of feed
5.0000e-04 (default) | positive scalar

Width of the feed, specified as a positive scalar in meters.
Example: 'FeedWidth',0.0050
Example: ant.FeedWidth = 0.0050
Data Types: double

GroundPlaneRadius — Radius of ground plane
0.0325 (default) | positive scalar

Radius of the ground plane, specified as a positive scalar in meters.
Example: 'GroundPlaneRadius',0.0050
Example: ant.GroundPlaneRadius = 0.050
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

2 Objects

2-564

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
coneangle2size Calculates equivalent cone height, broad radius, and narrow radius for cone
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Monocone Antenna

Create and view a default monocone antenna.

ant = monocone

ant =
 monocone with properties:

 monocone

2-565

 Radii: [5.0000e-04 0.0110 0.0110]
 GroundPlaneRadius: 0.0325
 ConeHeight: 0.0115
 Height: 0.0250
 FeedHeight: 5.0000e-04
 FeedWidth: 5.0000e-04
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Monocone Antenna with Infinite Ground Plane

Create a monocone antenna with an infinite ground plane.

ant = monocone;
ant.GroundPlaneRadius = inf;
show(ant)

2 Objects

2-566

Plot the radiation pattern of the monocone antenna for the given frequency.

pattern(ant,3.94e9)

 monocone

2-567

Monocone Antenna Without A Cylinder

Create a classical monocone antenna by setting the total height of the antenna to equal the sum of
cone height and feed height.

ant = monocone;
ant.Height = ant.ConeHeight+ant.FeedHeight;
show(ant)

2 Objects

2-568

Calculate antenna impedance over the given frequency span.

impedance(ant,(1e9:0.1e9:6e9))

 monocone

2-569

References
[1] McDonald, James L., and Dejan S. Filipovic. “On the Bandwidth of Monocone Antennas.” IEEE

Transactions on Antennas and Propagation 56, no. 4 (April 2008): 1196–1201. https://doi.org/
10.1109/TAP.2008.919226.

See Also
bicone | cavityCircular

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

2 Objects

2-570

patchMicrostripElliptical
Create elliptical microstrip patch antenna

Description
The patchMicrostripElliptical object creates a probe-fed elliptical microstrip patch antenna.
The default patch is centered at the origin. The ellipse is chosen for an operating frequency of around
5.45 GHz. Elliptical microstrip patch antennas are used in high-performance applications such as
spacecraft, aircraft, missiles, and satellites. Elliptical microstrip patch antennas with optimum
dimensions act as circularly polarized wave radiators.

Creation

Syntax
ant = patchMicrostripElliptical
ant = patchMicrostripElliptical(Name,Value)

Description

ant = patchMicrostripElliptical creates a probe-fed elliptical microstrip patch antenna
operating at 5.45 GHz.

ant = patchMicrostripElliptical(Name,Value) sets properties using one or more name-
value pairs. For example, ant = patchMicrostripElliptical('MajorAxis',0.0878) creates

 patchMicrostripElliptical

2-571

an elliptical microstrip patch antenna with a major axis of 0.0878 meters. Enclose each property
name in quotes.

Properties
MajorAxis — Longest diameter of ellipse
0.0300 (default) | scalar

Longest diameter of the ellipse along the X-axis, specified as a scalar in meters.
Example: 'MajorAxis',0.0989
Example: ant.MajorAxis = 0.0989
Data Types: double

MinorAxis — Shortest diameter of ellipse
0.0200 (default) | scalar

Shortest diameter of the ellipse along the Y-axis, specified as a scalar in meters.
Example: 'MinorAxis',0.0898
Example: ant.MinorAxis = 0.0898
Data Types: double

Height — Height of patch
0.0016 (default) | scalar

Height of patch above the ground plane along the Z-axis, specified as a scalar in meters.
Example: 'Height',0.001
Example: ant.Height = 0.001
Data Types: double

Substrate — Type of dielectric material
'Air' (default) | dielectric function handle

Type of dielectric material used as a substrate, specified as a dielectric material object handle. You
can choose any material from the DielectricCatalog or use your own dielectric material. For
more information, see dielectric. For more information on dielectric substrate meshing, see
“Meshing”.

Note The substrate dimensions must be lesser than the ground plane dimensions.

Example: d = dielectric('FR4'); 'Substrate',d
Example: d = dielectric('FR4'); ant.Substrate = d

GroundPlaneLength — Ground plane length
0.0450 (default) | scalar

Ground plane length along the X-axis, specified as a scalar in meters. Setting
'GroundPlaneLength' to Inf, uses the infinite ground plane technique for antenna analysis.

2 Objects

2-572

Example: 'GroundPlaneLength',120e-3
Example: ant.GroundPlaneLength = 120e-3
Data Types: double

GroundPlaneWidth — Ground plane width
0.0450 (default) | scalar

Ground plane width along the Y-axis, specified as a scalar in meters. Setting 'GroundPlaneWidth'
to Inf, uses the infinite ground plane technique for antenna analysis.
Example: 'GroundPlaneWidth',120e-3
Example: ant.GroundPlaneWidth = 120e-3
Data Types: double

PatchCenterOffset — Signed distance of patch from origin
[0 0] (default) | two-element real vector

Signed distance of the patch from the origin, specified as a two-element real vector with each
element unit in meters. Use this property to adjust the location of the patch relative to the ground
plane. Distances are measured along the length and width of the ground plane.
Example: 'PatchCenterOffset',[0.01 0.01]
Example: ant.PatchCenterOffset = [0.01 0.01]
Data Types: double

FeedOffset — Signed distance of feed from origin
[0.0047 0.0045] (default) | two-element real vector

Signed distance of the feed from the origin, specified as a two-element real vector with each element
unit in meters. Use this property to adjust the location of the feed relative to the ground plane and
patch.
Example: 'FeedOffset',[0.01 0.01]
Example: ant.FeedOffset = [0.01 0.01]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.

 patchMicrostripElliptical

2-573

Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array

2 Objects

2-574

patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Elliptical Microstrip Patch Antenna

Create and view a default elliptical microstrip patch antenna.

ant = patchMicrostripElliptical

ant =
 patchMicrostripElliptical with properties:

 MajorAxis: 0.0300
 MinorAxis: 0.0200
 Height: 0.0016
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0450
 GroundPlaneWidth: 0.0450
 PatchCenterOffset: [0 0]
 FeedOffset: [0.0047 0.0045]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show (ant)

 patchMicrostripElliptical

2-575

Visualize the radiation pattern of the antenna at 5.45 GHz.

pattern(ant,5.45e9)

2 Objects

2-576

See Also
patchMicrostrip | patchMicrostripCircular

Topics
“ISM Band Patch Microstrip Antennas and Mutually Coupled Patches”
“Rotate Antennas and Arrays”

Introduced in R2020a

 patchMicrostripElliptical

2-577

spiralRectangular
Create rectangular spiral antenna on X-Y plane

Description
The spiralRectangular object creates a single or two-arm rectangular spiral antenna. The default
rectangular spiral has two arms, is center-fed and is on the X-Y plane. The default resonating
frequency is 7.65 GHz.

A spiral rectangular antenna is made up of filaments. The distance between the two violet dashed
lines in the diagram represents the first filament or the initial width. The distance between the two
orange dashed lines in the diagram represents the second filament or the initial length.

Creation

Syntax
ant = spiralRectangular
ant = spiralRectangular(Name,Value)

2 Objects

2-578

Description

ant = spiralRectangular creates a default rectangular spiral antenna object operating at 7.65
GHz.

ant = spiralRectangular(Name,Value) sets properties using one or more name-value pairs.
For example, ant = spiralRectangular('NumArms',1) creates a rectangular spiral antenna
object with one arm. Enclose each property name in quotes.

Properties
NumArms — Number of arms of spiral
2 (default) | 1

Number of arms of the spiral, specified as 1 or 2.
Example: 'NumArms',1
Example: ant.NumArms = 1
Data Types: double

NumTurns — Number of turns in spiral
1.53 (default) | scalar

Number of turns in the spiral, specified as a scalar in meters. One turn length is taken as the length
of a complete 360-degree revolution. To calculate the length of 1.25 turns, the first spiral is created
up to one turn. Then the length of the second turn is scaled to the given fraction and added to the
first turn length.
Example: 'NumTurns',2.0
Example: ant.NumTurns = 2.0
Data Types: double

InitialWidth — Length of first filament along Y-axis
0.0010 (default) | scalar

Length of the first filament along the Y-axis from the origin to the midline of the strip width of the
second filament, specified as a scalar in meters. InitialWidth is the width between the dashed
violet color lines in the antenna image.
Example: 'InitialWidth',0.0050
Example: ant.InitialWidth = 0.0050
Data Types: double

InitialLength — Length of second filament along X-axis
0.0015 (default) | scalar

Length of the second filament along the X-axis from the mid line of the first filament to half of the
strip width of the third filament, specified as a scalar in meters. InitialLength is the width
between the dashed orange color lines in the antenna image.
Example: 'InitialLength',0.0055
Example: ant.InitialLength = 0.0055

 spiralRectangular

2-579

Data Types: double

StripWidth — Width of strip
4.0500e-04 (default) | scalar

Width of the strip, specified as a scalar in meters.
Example: 'StripWidth',5.0050e-04
Example: ant.StripWidth = 5.0050e-04
Data Types: double

Spacing — Spacing between turns
0.0011 (default) | scalar

Spacing between turns of the spiral, specified as a scalar in meters.
Example: 'Spacing',0.0015
Example: ant.Spacing = 0.0015
Data Types: double

WindingDirection — Direction of spiral turns (windings)
'CCW' (default) | 'CW'

Direction of the spiral turns (windings), specified as 'CW' or 'CCW'.
Example: 'WindingDirection','CW'
Example: ant.WindingDirection = CW
Data Types: char | string

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

2 Objects

2-580

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic

fields of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of

antenna element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna
rectspirallength2turns Calculate number of turns for specified arm length in rectangular spiral

antenna

Examples

 spiralRectangular

2-581

Default Rectangular Spiral Antenna

Create and view a default rectangular spiral antenna.

ant = spiralRectangular

ant =
 spiralRectangular with properties:

 NumArms: 2
 NumTurns: 1.5300
 InitialWidth: 0.0010
 InitialLength: 0.0015
 StripWidth: 4.0500e-04
 Spacing: 0.0011
 WindingDirection: 'CCW'
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at the default frequency.

pattern(ant,7.65e9)

2 Objects

2-582

Radiation Pattern of Reflector Backed Rectangular Spiral

Create a rectangular spiral antenna object with two arms and two turns.

ant_d = spiralRectangular('NumArms',2,'NumTurns',2,'InitialLength',1e-3,...
 'InitialWidth',1e-3,'Spacing',0.5e-3,'StripWidth',0.5e-3);

Back the spiral using a reflector antenna object.

 r = reflector('Exciter',ant_d,'GroundPlaneLength',15e-3,'GroundPlaneWidth',...
 15e-3,'Spacing',2e-3,'Substrate',dielectric('FR4'));
 figure;
 show(r);

 spiralRectangular

2-583

Plot the radiation pattern of the antenna at the specified frequency.

 figure;
 pattern(r,8e9);

2 Objects

2-584

Rectangular Spiral Antenna with Specified Arm Length

Create a single arm rectangular spiral antenna with a total arm length of 291 mm.

ant = spiralRectangular('NumArms',1,'NumTurns',3,'InitialLength',4.5e-3,...
 'InitialWidth',4.5e-3,'Spacing',3.3e-3,'StripWidth',1.2e-3);
nT = rectspirallength2turns(ant,291e-3);
ant.NumTurns = nT;
figure;
show(ant);

 spiralRectangular

2-585

References
[1] Nakano, H., H. Yasui, and J. Yamauchi. “Numerical Analysis of Two-Arm Spiral Antennas Printed

on a Finite-Size Dielectric Substrate.” IEEE Transactions on Antennas and Propagation 50,
no. 3 (March 2002): 362–70. https://doi.org/10.1109/8.999628.

[2] Nakano, H., J. Eto, Y. Okabe, and J. Yamauchi. “Tilted- and Axial-Beam Formation by a Single-Arm
Rectangular Spiral Antenna with Compact Dielectric Substrate and Conducting Plane.” IEEE
Transactions on Antennas and Propagation 50, no. 1 (January 2002): 17–24. https://doi.org/
10.1109/8.992557.

See Also
rectspirallength2turns | spiralArchimedean | spiralEquiangular

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

2 Objects

2-586

fractalSnowflake
Create fractal Koch snowflake antenna

Description
The fractalSnowflake object creates a Koch snowflake fractal antenna. These fractal antennas are
used in mobile phone, Wi-Fi, and radar applications.

A fractal antenna uses a fractal, a self-similar design that is repeated in different dimensions so as to
maximize effective the length or increase the perimeter of the material that transmits or receives
electromagnetic radiation. This makes the fractal antennas compact and therefore suitable for use in
small and complex circuits. Fractal antennas also have higher input impedance or resistance due to
their length or increased perimeter.

All fractal antennas are printed structures that are etched on a dielectric substrate.

 fractalSnowflake

2-587

Creation

Syntax
ant = fractalSnowflake
ant = fractalSnowflake(Name,Value)

Description

ant = fractalSnowflake creates a Koch’s snowflake fractal antenna. The default fractal is
centered at the origin, and the number of iterations is set to 2. The length of the fractal is for an
operating frequency of 4.15 GHz.

ant = fractalSnowflake(Name,Value) sets properties using one or more name-value pairs. For
example, ant = fractalSnowflake('Numiterations',4) creates a Koch's snowflake with four
iterations.

Properties
NumIterations — Number of iterations performed on fractal antenna
2 (default) | scalar integer

Number of iterations performed on the fractal antenna, specified as a scalar integer.
Example: 'NumIterations',4
Example: ant.NumIterations = 4
Data Types: double

Length — Length of the sides of the equilateral triangle
0.0900 (default) | positive scalar integer

Length of the side of the equilateral triangle in fractal snowflake, specified as a positive scalar
integer in meters.
Example: 'Length',0.5000
Example: ant.Length = 0.5000
Data Types: double

Height — Height of fractal
0.0015 (default) | positive scalar integer

Height of the fractal from the ground plane along Z-axis, specified as a positive scalar integer in
meters.
Example: 'Height',0.0050
Example: ant.Height = 0.0050
Data Types: double

Substrate — Type of dielectric material
air (default) | dielectric object

2 Objects

2-588

Type of dielectric material used as a substrate, specified as an dielectric object. For more
information, see dielectric. For more information on dielectric substrate meshing, see “Meshing”.
Example: d = dielectric('FR4'); ant = fractalSnowflake('Substrate',d)
Example: ant=
fractalSnowflake('Substrate',dielectric('Name','RO4003C','EpsilonR',3.38,'Los
sTangent',0.0027,'Thickness',0.508e-3))

Data Types: string | char

GroundPlaneLength — Length of ground plane
0.1000 (default) | positive scalar integer

Length of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneLength',0.0550
Example: ant.GroundPlaneLength = 0.0550
Data Types: double

GroundPlaneWidth — Width of ground plane
0.1100 (default) | positive scalar integer

Width of the ground plane, specified as a positive scalar integer in meters.
Example: 'GroundPlaneWidth',0.0550
Example: ant.GroundPlaneWidth = 0.0550
Data Types: double

FractalCenterOffset — Signed distance of fractal snowflake center from origin
[0 0] (default) | two-element real-valued vector

Signed distance of fractal snowflake center from origin, specified as a two-element real-valued vector
with each element unit in meters. The distance is measured along the length and width of the ground
plane.
Example: 'FractalCenterOffset',[0 0.080]
Example: ant.FractalCenterOffset = [0 0.080]
Data Types: double

FeedOffset — Signed distance of feed from origin
[0 0] (default) | two-element real-valued vector

Signed distance of the feed from the origin, specified as a two-element real-valued vector with each
element unit in meters.
Example: 'FeedOffset',[0 0.080]
Example: ant.FeedOffset = [0 0.080]
Data Types: double

FeedDiameter — Diameter of feed
0.0020] (default) | positive scalar integer

Diameter of the feed, measured in meters.

 fractalSnowflake

2-589

Example: 'FeedDiameter',0.001

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Load — Lumped elements
[1x1] lumpedElement] (default) | lumped element

Lumped elements added to the antenna feed, specified as a lumpedelement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. lumpedelement is
the object handle for the load created using lumpedElement. For more information, see
lumpedElement.
Example: 'Load',lumpedelement.
Example: ant.Load = lumpedElement('Impedance',75,'Frequency',2.9e6,'location',
[20e-3 1e-3 1.5e-3])

2 Objects

2-590

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
design Design prototype antenna or arrays for resonance at specified frequency

Examples

Fractal Snowflake with Default Properties

Create and View fractal Koch snowflake antenna object with default properties.

ant = fractalSnowflake

ant =
 fractalSnowflake with properties:

 Length: 0.0900
 NumIterations: 2
 Height: 0.0015
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1000
 GroundPlaneWidth: 0.1100
 FractalCenterOffset: [0 0]
 FeedOffset: [0 0]
 FeedDiameter: 0.0020
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

 fractalSnowflake

2-591

Fractal Snowflake Antenna with Specified Parameters

Create and view fractal Koch snowflake on a substrate with a dielectric constant of 4 and thickness of
1.5e-3.

 ant = fractalSnowflake('Substrate', dielectric('EpsilonR',4,...
 'Thickness',1.5e-3));
 show(ant);

2 Objects

2-592

Impedance Plot of Fractal Koch Snowflake Antenna

Create a fractal Koch snowflake antenna and plot its impedance over a frequency range of 400-1500
MHz.

ant = fractalSnowflake('Length',180e-3,'GroundPlaneLength',280e-3,...
 'GroundPlaneWidth',240e-3,'Height',5e-3,'FeedOffset',...
 [75e-3,-45e-3]);
figure
impedance(ant,(400:10:1500)*1e6)

 fractalSnowflake

2-593

See Also
fractalCarpet | fractalGasket | fractalIsland | fractalKoch

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

2 Objects

2-594

vivaldiAntipodal
Create an antipodal Vivaldi element

Description
The vivaldiAntipodal object creates an antipodal Vivaldi element. Antipodal Vivaldi come under
the group of end-fire tapered slot antennas, and such antennas are expected to provide medium gain
with less side lobes and wide bandwidth. These antennas are low cost, geometrically simple in shape,
and mostly used in wireless communications and radar applications.

 vivaldiAntipodal

2-595

Creation

Syntax
ant = vivaldiAntipodal
ant = vivaldiAntipodal(Name,Value)

Description

ant = vivaldiAntipodal creates an antipodal Vivaldi object. By default, the antenna is centered
at the origin and the dimension are chosen for an operating frequency of 3.22 GHz.

ant = vivaldiAntipodal(Name,Value) sets properties using one or more name-value pairs. For
example, aviv = vivaldiAntipodal('BoardLength',0.2) creates a antipodal Vivaldi with a
board length of 0.2 m.

Note Properties you do not specify retain their default values.

Properties
BoardLength — Printed circuit board (PCB) length along X-axis
0.202 (default) | scalar

Length of the PCB, specified as a scalar in meter.
Example: 'BoardLength',2e-3

BoardWidth — Printed circuit board (PCB) length along Y-axis
0.12 (default) | scalar

Width of the PCB, specified as a scalar in meter.
Example: 'BoardWidth',2e-3

Height — Printed circuit board (PCB) length along Z-axis
0.000508 (default) | scalar

Height of the PCB, specified as a scalar in meter.
Example: 'Height',1e-6

OpeningRate — Taper opening rate
25 (default) | scalar

Opening rate of taper, specified as a scalar. This property determines the rate at which the notch
transitions from the feedpoint to the aperture. Minimum value of OpeningRate is 1 and maximum
value of is 80.
Example: 'OpeningRate',1.2
Data Types: double

InnerTaperLength — Inner taper length
0.187 (default) | scalar

2 Objects

2-596

Taper length at antenna's inner edge, specified as a scalar in meters.
Example: 'InnerTaperLength',2e-3

OuterTaperLength — Outer taper length
0.08 (default) | scalar

Taper length at antenna's outer edge, specified as a scalar in meter.
Example: 'OuterTaperLength',2e-3

ApertureWidth — Aperture width
0.084 (default) | scalar

Width of the aperture, specified as a scalar in meters.
Example: 'ApertureWidth',3e-3

StripLineWidth — Strip width
0.0011 (default) | scalar

Width of the strip used at feedpoint, specified as a scalar in meters.
Example: 'StripLineWidth',0.3
Data Types: double

GroundPlaneWidth — Ground plane width
0.05 (default) | scalar

Ground plane width, specified a scalar in meters. By default, ground plane width is measured along
the Y-axis.
Example: 'GroundPlaneWidth',4
Data Types: double

Substrate — Type of dielectric material
[1x1 dielectric] (default) | dielectric object

Type of dielectric material used as a substrate, specified as an dielectric object. For more
information, see dielectric. For more information on dielectric substrate meshing, see “Meshing”.
By default, the dielectric is Rogers RO4003C with EpsilonR of 3.38, LossTangent of 0.0027,
and Thickness of 0.000508
Example: ant=
vivaldiAntipodal('Substrate',dielectric('Name','RO4003C','EpsilonR',3.38,'Los
sTangent',0.0027,'Thickness',0.6e-3))

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90

 vivaldiAntipodal

2-597

Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumped element object handle

Lumped elements added to the antenna feed, specified as a lumped element object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. lumpedelement is the object handle for the load created using
lumpedElement.
Example: avi.Load = lumpedElement('Impedance',75)

Object Methods
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer

2 Objects

2-598

pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna
element in array

patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
design Design prototype antenna or arrays for resonance at specified frequency

Examples

Create and View Antipodal Vivaldi Antenna

Create an antipodal Vivaldi antenna object with the specified properties.

avi = vivaldiAntipodal("OpeningRate",30,'Substrate',dielectric('Name','RO4003C','EpsilonR',3.38,'LossTangent',0.0027,...
 'Thickness',0.508e-3))

avi =
 vivaldiAntipodal with properties:

 BoardLength: 0.2020
 BoardWidth: 0.1200
 Height: 5.0800e-04
 OpeningRate: 30
 StripLineWidth: 0.0011
 OuterTaperLength: 0.0800
 InnerTaperLength: 0.1870
 ApertureWidth: 0.0840
 GroundPlaneWidth: 0.0500
 Substrate: [1x1 dielectric]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

View the antenna.

show(avi)

 vivaldiAntipodal

2-599

Radiation pattern of Antipodal Vivaldi Antenna

Plot the radiation pattern of the antipodal Vivaldi antenna at 3 GHz

avi=vivaldiAntipodal("OpeningRate",30,'Substrate',dielectric('Name','RO4003C','EpsilonR',3.38,'LossTangent',0.0027,...
'Thickness',0.508e-3))

avi =
 vivaldiAntipodal with properties:

 BoardLength: 0.2020
 BoardWidth: 0.1200
 Height: 5.0800e-04
 OpeningRate: 30
 StripLineWidth: 0.0011
 OuterTaperLength: 0.0800
 InnerTaperLength: 0.1870
 ApertureWidth: 0.0840
 GroundPlaneWidth: 0.0500
 Substrate: [1x1 dielectric]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

2 Objects

2-600

pattern(avi,3e9)

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
slot | spiralArchimedean | vivaldi | yagiUda

Topics
“Rotate Antennas and Arrays”

Introduced in R2020a

 vivaldiAntipodal

2-601

waveguideRidge
Create ridged waveguide antenna

Description
The waveguideRidge object creates a dual ridged waveguide antenna. The ridges ensure a smooth
transition from an input impedance of 50 ohms to the impedance of free space (377 ohms). The dual
ridged waveguide antenna widely used in ultra-wideband applications covering a large spectrum of
frequencies. Ridged waveguide antennas are used in radio astronomy applications.

2 Objects

2-602

Creation
Syntax
ant = waveguideRidge
ant = waveguideRidge(Name,Value)

Description

ant = waveguideRidge creates a double-ridged waveguide antenna. The default
waveguideRidge antenna object is centered on the XY-plane. The object dimensions are chosen for
an operating frequency of 8-10 GHz.

ant = waveguideRidge(Name,Value) sets properties using one or more name-value pairs. For
example, ant = waveguideRidge('Height',1) creates a ridge waveguide with a height of 1
meter.

Note Properties you do not specify retain their default values.

Properties
Length — Length of waveguide
0.0210 (default) | positive real-valued scalar

Length of the waveguide, specified as a real-valued scalar in meters.
Example: 'Length',0.0410
Example: ant.Length = 0.0410
Data Types: double

Width — Width of waveguide
0.0400 (default) | positive real-valued scalar

Width of the waveguide, specified as a real-valued scalar in meters.
Example: 'Width',0.0640
Example: ant.Width = 0.0640
Data Types: double

Height — Height of waveguide
0.0250 (default) | positive real-valued scalar

Height of the waveguide, specified as a real-valued scalar in meters.
Example: 'Height',0.0340
Example: ant.Height = 0.0340
Data Types: double

RidgeLength — Length of Ridge
0.01875 (default) | positive real-valued scalar

 waveguideRidge

2-603

Length of the ridge, specified as a real-valued scalar in meters.
Example: 'RidgeLength',0.0220
Example: ant.RidgeLength = 0.0220
Data Types: double

RidgeWidth — Width of Ridge
0.0025 (default) | positive real-valued scalar

Width of the ridge, specified as a real-valued scalar in meters.
Example: 'RidgeWidth',0.0030
Example: ant.RidgeLength = 0.0060
Data Types: double

RidgeGap — Gap between two ridges
0.0088 (default) | real-valued scalar

Gap between two ridges, specified as a real-valued scalar in meters.
Example: 'RidgeGap',0.0070
Example: ant.RidgeGap = 0.0098
Data Types: double

FeedHoleRadius — Radius of feeding hole
0.00005 (default) | real-valued scalar

Radius of the feeding hole, specified as a real-valued scalar in meters.
Example: 'FeedHoleRadius',0.00006
Example: ant.FeedHoleRadius = 0.00010
Data Types: double

FeedWidth — Width of feed
0.0001 (default) | positive real-valued scalar

Width of the feed, specified as a real-valued scalar in meters.
Example: 'FeedWidth',0.0010
Example: ant.FeedWidth = 0.0020
Data Types: double

FeedOffset — Signed distances from origin
[-0.0675 0] (default) | two-element vector

Signed distances from the origin measured along the length and width of the waveguide, specified as
a two-element vector with each element in meters.
Example: 'FeedOffset',[-0.0725 0]
Example: ant.FeedOffset = [-0.0830 0]
Data Types: double

2 Objects

2-604

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedelement object

Lumped elements added to the antenna feed, specified as lumpedelement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement. Thelumpedelement is a object handle for the load created
using lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

 waveguideRidge

2-605

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure

Examples

Create a Ridged Waveguide Antenna with Default Properties

Create a waveguideRidge antenna object with default properties.

a = waveguideRidge

a =
 waveguideRidge with properties:

 Length: 0.0210
 Width: 0.0400
 Height: 0.0250
 RidgeLength: 0.0187
 RidgeWidth: 0.0025
 RidgeGap: 0.0088
 FeedHoleRadius: 5.0000e-04
 FeedWidth: 1.0000e-04
 FeedOffset: [-0.0067 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

Create a Ridged Waveguide Antenna with Specified Properties

Create a waveguideRidge antenna object with the properties specified.

h = waveguideRidge('Length',0.0273,'Width', 0.02286,'RidgeGap',2e-3, ...
 'Height', 0.01016,'RidgeLength',0.022);

2 Objects

2-606

View the waveguideRidge antenna using a show function.

figure
show(h)

Plot the 3-D radiation pattern of the waveguideRidge antenna at 5 GHz.

pattern(h,5e9)

 waveguideRidge

2-607

See Also
cavityCircular | waveguide | waveguideCircular | waveguideSlotted

Topics
“Rotate Antennas and Arrays”

Introduced in R2019b

2 Objects

2-608

wireStack
Create single or multifeed wire antenna

Description
The wireStack object converts all applicable elements in the antenna library to wire antennas with
single or multiple feeds. You can now create cylindrical thin-wire antennas and analyze them using
with the existing antenna analysis functions.

Note For some antennas, the wire geometry may be altered to allow the placement of the feed.
Please use the show function to view the resulting antenna and verify its shape.

Creation

Syntax
ant = wireStack
ant = wireStack(libant)

Description

ant = wireStack creates a half-wavelength wire dipole antenna. The default wire dipole is center
fed with the feedpoint at the origin, and it is located along the Z-axis. The antenna length is chosen
for an operating frequency of 75 MHz.

ant = wireStack(libant) converts a strip-based antenna from the Antenna Toolbox library to a
wire antenna for further analysis. Conversion is based on the equivalent radius using the
strip2cylinder utility function.

Input Arguments

libant — Antenna elements
antenna element object

Antenna elements, specified as any one of the following antenna element objects: dipole,
dipoleFolded, dipoleMeander, dipoleVee, dipoleHelix, dipoleJ, dipoleCycloid,
dipoleCrossed, loopCircular, and loopRectangular.

Output Arguments

ant — Wire antenna
wireStack object (default)

Wire antenna, returned as a wireStack object.

 wireStack

2-609

Properties
Name — Name of wire antenna
'Dipole' (default) | string scalar

Name of the wire antenna, specified as a string scalar.
Example: ant.Name = 'monopole'
Data Types: string

FeedLocation — Antenna feed locations
[0 0 0] (default) | N-by-3 array of Cartesian coordinates

This property is read-only.

Antenna feed locations, specified as an N-by-3 array of Cartesian coordinates with each element unit
in meters.
Example: ant.FeedLocation = [0 2 4]
Data Types: double

FeedVoltage — Magnitude of excitation voltage at each feed
1 (default) | 1-by-N array of doubles

Magnitude of excitation voltage at each feed, specified as a 1-by-N array of doubles.
Example: ant.FeedVoltage = 2
Data Types: double

FeedPhase — Phase shift applied to voltage at each feed
0 (default) | 1-by-M array of doubles

Phase shift applied to voltage at each feed, specified as a 1-by-M array of doubles.
Example: ant.FeedVoltage = 60
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

2 Objects

2-610

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Wire Antenna

Create and view a default dipole wire antenna.

ant = wireStack

 wireStack

2-611

ant =
 wireStack with properties:

 Name: 'Dipole'
 FeedLocation: [0 0 0]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(ant)

Plot the radiation pattern of the antenna at the specified frequency.

pattern(ant,75e6)

2 Objects

2-612

See Also
dipole | dipoleCrossed | dipoleCycloid | dipoleFolded | dipoleHelix | dipoleJ |
dipoleMeander | dipoleVee | loopCircular | loopRectangular | strip2cylinder

Topics
“Rotate Antennas and Arrays”
“Wire Solver”

Introduced in R2020a

 wireStack

2-613

reflectorGrid
Create grid reflector-backed antenna

Description
The reflectorGrid object creates a grid reflector-backed antenna. The grid reflector uses a grid of
parallel wires or bars oriented in one direction. Grid reflectors can be used as high-gain antennas in
point-to-point communications.

Creation

Syntax
ant = reflectorGrid
ant = reflectorGrid(Name,Value)

Description

ant = reflectorGrid creates a grid reflector-backed antenna. The default antenna object has an
exciter as a dipole with the feed point located at the origin on the X-Y plane, and the antenna
dimensions are chosen for an operating frequency of 1 GHz.

ant = reflectorGrid(Name,Value) sets “Properties” on page 2-614 using name-value pairs.
For example, reflectorGrid('GroundPlaneWidth',0.6) creates a grid reflector with a width of
0.6 meters. You can specify multiple name-value pairs. Enclose each property name in quotes.
Properties not specified retain their default values.

Properties
Exciter — Antenna used as exciter
dipole (default) | single-element antenna object

2 Objects

2-614

Antenna used as an exciter, specified as a single-element antenna object like dipole, horn and so
on.
Example: 'Exciter',dipole
Example: ant.Exciter =
dipole('Length',0.1409,'Width',0.02,'FeedOffset',0,'Tilt',90,'TiltAxis',[0 1
0])

Spacing — Distance between reflector and exciter
0.175 (default) | positive scalar

Distance between reflector and exciter, specified as a positive scalar in meters.
Example: 'Spacing',0.259
Example: ant.Spacing = 0.195
Data Types: double

GroundPlaneLength — Reflector length
0.2 (default) | positive scalar

Reflector length along the X-axis, specified as a positive scalar in meters.
Example: 'GroundPlaneLength',0.6
Example: ant.GroundPlaneLength = 0.18
Data Types: double

GroundPlaneWidth — Reflector width
0.2 (default) | positive scalar

Reflector width along the Y-axis, specified as a positive scalar in meters.
Example: 'GroundPlaneWidth',0.6
Example: ant.GroundPlaneWidth = 0.18
Data Types: double

GridType — Type of grid used in reflector
'HV' (default) | 'VH' | 'V' | 'H' | character vector | string scalar

Type of the grid used in the reflector, specified as either one of the following:

• 'H' — grids are arranged horizontally in the reflector.
• 'V' — grids are arranged vertically in the reflector.
• 'HV' or 'VH' — grids are arranged both horizontally and vertically in the reflector.

Example: 'GridType','H'
Example: ant.GridType = 'V'
Data Types: char

GridSpacing — Distance between two grid cells
0.018 (default) | positive scalar

Distance between the two grid cells, specified as a positive scalar in meters.

 reflectorGrid

2-615

Example: 'GridSpacing',0.018
Example: ant.GridSpacing = 0.014
Data Types: double

GridWidth — Width of each grid cell
0.022 (default) | positive scalar

Width of each grid cell, specified as a positive scalar in meters.
Example: 'GridWidth',0.3
Example: ant.GridWidth = 0.28
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

2 Objects

2-616

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelements, where lumpedelements is the load added to the antenna
feed.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
pattern Radiation pattern and phase of antenna or array; Embedded pattern of

antenna element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic

fields of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
optimize Optimize antenna or array using SADEA optimizer
design Design prototype antenna or arrays for resonance at specified frequency
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array
numGridsToSpacing Calculate grid spacing in grid for reflectorGrid object

Examples

Design Grid Reflector-Backed Antenna with Default Properties

Create and view a grid reflector-backed antenna object with default properties.

ant = reflectorGrid;
show(ant)

 reflectorGrid

2-617

Plot the radiation pattern of the antenna at 1 GHz.

pattern(ant,1e9)

2 Objects

2-618

Design Grid Reflector-Backed Biquad Antenna

Create and view a grid reflector-backed biquad antenna with an arm length of 0.01 meters.

d = biquad('ArmLength',0.01);
h = reflectorGrid('Exciter',d);
show(h)

 reflectorGrid

2-619

Plot the radiation pattern of the antenna at 0.6 GHz.

pattern(h,0.6e9)

2 Objects

2-620

Change Grid Type in Grid Reflector-Backed Antenna

Create and view grid reflector-baked dipole blade antenna.

d = dipoleBlade('Length',0.1,'TaperLength',0.05,'FeedGap',0.002);
h = reflectorGrid('Exciter',d);
show(h)

 reflectorGrid

2-621

Change the grid type from 'HV' to 'H'.

h.GridType = 'H';

View the antenna with grid type 'H'.

show(h)

2 Objects

2-622

Plot the radiation pattern at 1 GHz.

pattern(h,1e9)

 reflectorGrid

2-623

References
[1] Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley,

2005.

See Also
reflector | reflectorCircular | reflectorCorner | reflectorParabolic

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

2 Objects

2-624

disconeStrip
Create strip discone antenna

Description
The disconeStrip antenna object creates a strip discone antenna. The strip discone antenna is an
approximation to a solid discone antenna, where the cone and the disc are replaced with strips. The
strip discone antennas are lighter in weight and suited for applications in high frequency (HF) and
very high frequency (VHF) bands.

Creation

Syntax
ant = disconeStrip
ant = disconeStrip(Name,Value)

Description

ant = disconeStrip creates a strip discone antenna with dimensions for a resonant frequency of
147.38 MHz. The default strip discone antenna has a feedpoint at the center of the disc.

ant = disconeStrip(Name,Value) sets “Properties” on page 2-625 using name-value pairs. For
example, disconeStrip('NumStrips',8) creates a discone strip antenna with eight strips. You
can specify multiple name-value pairs. Enclose each property name in quotes. Properties not
specified retain their default values.

Properties
NumStrips — Number of strips
12 (default) | scalar in the range [6, 64]

 disconeStrip

2-625

Number of strips to form the cone and the disc, specified as a scalar in the range [6, 64]. The number
of strips can be increased to increase the impedance bandwidth of the disconeStrip antenna
object.
Example: 'NumStrips',8
Example: ant.NumStrips = 14
Data Types: double

StripWidth — Width of strip
20e-3 (default) | scalar

Width of each strip in the strip discone antenna, specified as a scalar in meters.
Example: 'StripWidth',10e-3
Example: ant.StripWidth = 15.8e-3
Data Types: double

Height — Vertical height between broad and narrow diameter of cone
1.308 (default) | scalar

Vertical height between the maximum or broad diameter and the minimum or narrow diameter of the
cone, specified as a scalar in meters. The vertical height can be decreased to increase the operating
frequency.
Example: 'Height',1.59
Example: ant.Height = 1.89
Data Types: double

ConeRadii — Radii of cone
[65e-3 810e-3] (default) | two-element vector

Radii of the cone, specified as a two-element vector in meters. In the two element vector, the first
element specifies the narrow or minimum radius and second element specifies the broad or maximum
radius of the cone. The radii of the cone can be decreased to increase the operating frequency and
high-frequency input impedance.
Example: 'ConeRadii',[63e-3 840e-3]
Example: ant.ConeRadii = [65e-3 910e-3]
Data Types: double

DiscRadius — Radius of disc
700e-3 (default) | scalar

Radius of the disc, specified as a scalar in meters. The radius of the disc can be decreased to increase
the operating frequency and it can be increased to increase the low-frequency input impedance.

Note DiscRadius should be smaller than the “ConeRadii” on page 2-0 .

Example: 'DiscRadius',900e-3
Example: ant.DiscRadius = 829e-3

2 Objects

2-626

Data Types: double

FeedHeight — Gap between cone and disc
30e-3 (default) | scalar

Gap between the cone and the disc, specified as a scalar in meters. This gap represents height of the
field and the gap can be decreased to increase the high-frequency input impedance.
Example: 'FeedHeight',34e-3
Example: ant.FeedHeight = 34e-3
Data Types: double

FeedWidth — Diameter of feed
20e-3 (default) | scalar

Diameter of the feed, specified as a scalar in meters.
Example: 'FeedWidth',25e-3
Example: ant.FeedWidth = 21e-3
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelements, where lumpedelements is the load added to the antenna
feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

 disconeStrip

2-627

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
coneangle2size Calculates equivalent cone height, broad radius, and narrow radius for cone
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
design Design prototype antenna or arrays for resonance at specified frequency
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array

Examples

Design Strip Discone Antenna with Default Properties

Create and view a strip discone antenna with default properties.

ant = disconeStrip;
show(ant)

2 Objects

2-628

Plot the radiation pattern of the antenna at 147.38 MHz.

pattern(ant, 147.38e6)

 disconeStrip

2-629

Create Strip Discone Antenna and Plot S-Parameters

Create and view a strip discone antenna object with the specifed properties.

ant = disconeStrip('Height',92e-3,'ConeRadii',[5.5e-3 53e-3],'DiscRadius', 37e-3,'NumStrip',16,...
 'StripWidth',1e-3,'FeedWidth',0.5e-3,'FeedHeight',2.2e-3);
show(ant)

2 Objects

2-630

Plot the S-Parameters of the antenna over the frequency span of 500 MHz to 5 GHz.

s = sparameters(ant,linspace(500e6,5e9,101));
figure
rfplot(s)

 disconeStrip

2-631

More About
Parametric Analysis Guidelines

To understand how the properties of the disconeStrip antenna object influence the antenna
design, use the following parametric analysis guidelines.

• To increase the operating frequency, decrease the dimensions of the disconeStrip antenna
object using the “ConeRadii” on page 2-0 , “DiscRadius” on page 2-0 , and “Height” on page
2-0 properties.

• To increase the impedance bandwidth, increase the number of strips in the disconeStrip
antenna object using the “NumStrips” on page 2-0 property.

• To improve high-frequency input impedance, decrease the cone radii and feed height of the
antenna using the “ConeRadii” on page 2-0 and the “FeedHeight” on page 2-0 properties.

• To increase low frequency input impedance, increase the radius of the disc using the “DiscRadius”
on page 2-0 property.

2 Objects

2-632

References
[1] Khumanthem.T., C.Sairam, S.D.Ahirwar and M.Balachary. ''Compact Discone Antenna with Small

Form Factor in VHF Band'' EWCI, 2014.

[2] Ki-Hak Kim, Jin-U Kim, and Seong-Ook Park. “An Ultrawide-Band Double Discone Antenna with
the Tapered Cylindrical Wires.” IEEE Transactions on Antennas and Propagation 53, no. 10
(October 2005): 3403–6. https://doi.org/10.1109/TAP.2005.856036.

[3] Tai C-T. and S. A. Long. ''Dipoles and Monopoles'' in Antenna Engineering Handbook, 4th ed., J. L.
Volakis (Ed.), McGraw-Hill, 2007.

[4] McDonald, James L., and Dejan S. Filipovic. “On the Bandwidth of Monocone Antennas.” IEEE
Transactions on Antennas and Propagation 56, no. 4 (April 2008): 1196–1201. https://doi.org/
10.1109/TAP.2008.919226.

See Also
bicone | biconeStrip | discone | monocone

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

 disconeStrip

2-633

monopoleRadial
Create monopole antenna mounted on radial ground plane

Description
The monopoleRadial antenna object creates a monopole antenna mounted on a radial ground
plane. The monopole radial antenna is a variant of the monopole antenna, where the antenna is
mounted on radials as versus a rectangular ground plane. These antennas are commonly used in
airborne and ground-based radio communications.

Creation

Syntax
mpr = monopoleRadial
mpr = monopoleRadial(Name,Value)

Description

mpr = monopoleRadial creates a quarter wavelength monopole antenna with a radial ground
plane. The default antenna object is center-fed with the feed point located at the origin on the X-Y
plane. The default antenna object resonates at 75 MHz.

mpr = monopoleRadial(Name,Value) sets “Properties” on page 2-634 using name-value pairs.
For example, monopoleRadial('Height',2.2) creates a monopole antenna mounted on a radial
ground plane with height of 2.2 meters. You can specify multiple name-value pairs. Enclose each
property name in quotes. Properties not specified retain their default values.

Properties
Height — Monopole height
1 (default) | positive scalar

2 Objects

2-634

Monopole height, specified as a positive scalar in meter.
Example: 'Height',3
Data Types: double

Width — Monopole width
0.1000 (default) | positive scalar

Monopole width, specified as a positive scalar in meters.

Note Monopole width should be less than 'Height'/4 and greater than 'Height'/1001. For more
information, see [2].

Example: 'Width',0.05
Data Types: double

NumRadials — Number of radials
12 (default) | positive scalar

Number of radials, specified as a positive scalar.
Example: 'NumRadials',14
Data Types: double

RadialWidth — Width of each radial
0.02 (default) | positive scalar

Width of each radial in the monopole radial antenna, specified as a positive scalar in meters.
Example: 'RadialWidth',0.05
Data Types: double

RadialLength — Length of each radial
2.85 (default) | positive scalar

Length of each radial in the monopole radial antenna, specified as a positive scalar in meters.
Example: 'RadialLength',3.13
Data Types: double

RadialTilt — Tilt angle of radials with respect to ground plane
0 (default) | scalar

Tilt angle of radials with respect to the ground plane, specified as a scalar in degree. Radials are
tilted along the X-Y plane in negative Z direction.
Example: 'RadialTilt',10
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

 monopoleRadial

2-635

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelement, where lumpedelement is the load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object

2 Objects

2-636

returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
design Design prototype antenna or arrays for resonance at specified frequency
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array

Examples

Design Monopole Radial Antenna with Default Properties

Create and view a monopole antenna mounted on radial ground plane with default properites.

ant = monopoleRadial;
show(ant)

 monopoleRadial

2-637

Plot Radiation Pattern of Monopole Radial Antenna

Create and view a monopole antenna on a radial ground plane with the width of 0.0067 meters and
the height of 0.33331 meters.

 m = monopoleRadial('Width',0.0067,'Height',0.3331);
 show(m)

2 Objects

2-638

Plot the radiation pattern of the antenna at a frequency of 225 MHz.

pattern(m,225e6)

 monopoleRadial

2-639

References
[1] Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley,

2005.

[2] Volakis, John. Antenna Engineering Handbook, 4th Ed. New York: Mcgraw-Hill, 2007.

See Also
dipole | monopoleTopHat | patchMicrostrip

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

2 Objects

2-640

hornRidge
Create double-ridged rectangular horn

Description
The hornRidge object creates a double-ridged horn antenna with the default dimensions chosen for
an operating frequency range of 10 GHz-12 GHz.

Ridged horn antennas are commonly used in electromagnetic interference and compatibility
applications for generating electromagnetic fields. These antennas are also used in radio astronomy
or radar cross-section (RCS) measurements.

Creation

Syntax
ant = hornRidge
ant = hornRidge(Name,Value)

Description

ant = hornRidge creates a double-ridged horn antenna with the default dimensions chosen for an
operating frequency range of 10 GHz-12 GHz.

ant = hornRidge(Name,Value) sets properties using one or more name-value pairs. For example,
ant = hornRidge('FlareLength',178.38e-3) creates a ridged horn antenna object with a flare
length of 178.39 millimeters.

 hornRidge

2-641

Properties
NumFlares — Number of flares
4 (default) | 2 | 0

Number of flares, specified as 0, 2, or 4. Specify zero if you do not want any flares.
Example: 'NumFlares',2
Example: ant.NumFlares = 2
Data Types: double

FlareLength — Length of flare
0.1784 (default) | nonnegative scalar

Length of the flare, specified as a nonnegative scalar in meters.
Example: 'FlareLength',0.2760
Example: ant.FlareLength = 0.2760
Data Types: double

FlareWidth — Width of flare
0.1834 (default) | nonnegative scalar

Width of the flare, specified as a nonnegative scalar in meters.
Example: 'FlareWidth',0.3760
Example: ant.FlareWidth = 0.3760
Data Types: double

FlareHeight — Height of flare
0.1732 (default) | nonnegative scalar

Height of the flare, specified as a nonnegative scalar in meters.
Example: 'FlareHeight',0.2560
Example: ant.FlareHeight = 0.2560
Data Types: double

Length — Length of waveguide
0.0538 (default) | nonnegative scalar

Length of the waveguide, specified as a nonnegative scalar in meters.
Example: 'Length',0.0676
Example: ant.Length = 0.0676
Data Types: double

Width — Width of waveguide
0.0370 (default) | nonnegative scalar

Width of the waveguide, specified as a nonnegative scalar in meters.

2 Objects

2-642

Example: 'Width',0.0476
Example: ant.Width = 0.0476
Data Types: double

Height — Height of waveguide
0.0177 (default) | nonnegative scalar

Height of the waveguide, specified as a nonnegative scalar in meters.
Example: 'Height',0.0340
Example: ant.Height = 0.0340
Data Types: double

RidgeLength — Length of waveguide ridge
0.0370 (default) | nonnegative scalar

Length of the waveguide ridge, specified as a nonnegative scalar in meters.
Example: 'RidgeLength',0.0276
Example: ant.RidgeLength = 0.0276
Data Types: double

RidgeWidth — Width of waveguide ridge
0.0050 (default) | nonnegative scalar

Width of the waveguide ridge, specified as a nonnegative scalar in meters.
Example: 'RidgeWidth',0.0040
Example: ant.RidgeWidth = 0.0040

RidgeGap — Gap between two ridges of waveguide
0.0070 (default) | nonnegative scalar

Gap between the two ridges of the waveguide, specified as a nonnegative scalar in meters.
Example: 'RidgeGap',0.0060
Example: ant.RidgeGap = 0.0060
Data Types: double

FeedHoleRadius — Radius of feeding hole
0.0005 (default) | nonnegative scalar

Radius of the feeding hole, specified as a nonnegative scalar in meters.
Example: 'FeedHoleRadius',0.0008
Example: ant.FeedHoleRadius = 0.0008
Data Types: double

FeedWidth — Width of feed
0.0001 (default) | nonnegative scalar

Width of the feed, specified as a nonnegative scalar in meters.

 hornRidge

2-643

Example: 'FeedWidth',0.0002
Example: ant.FeedWidth = 0.0002
Data Types: double

FeedOffset — Signed distance from closed end of waveguide
[-0.0076 0] (default) | two-element vector

Signed distance from the closed end of the waveguide, specified as a two-element vector with each
element unit in meters.
Example: 'FeedOffset',[-0.00626 0]
Example: ant.FeedOffset = [-0.00626,0]
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

2 Objects

2-644

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Default Ridged Horn Antenna and Radiation Pattern

Create and view a default double ridged horn antenna.

ant = hornRidge

ant =
 hornRidge with properties:

 NumFlares: 4
 FlareLength: 0.1784
 FlareWidth: 0.1834
 FlareHeight: 0.1732
 Length: 0.0538
 Width: 0.0370

 hornRidge

2-645

 Height: 0.0177
 RidgeLength: 0.0370
 RidgeWidth: 0.0050
 RidgeGap: 0.0070
 FeedHoleRadius: 5.0000e-04
 FeedWidth: 1.0000e-04
 FeedOffset: [-0.0076 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 11 GHz.

p = PatternPlotOptions('MagnitudeScale',[0 20]);
figure;
pattern(ant,11e9,'patternOptions',p);

2 Objects

2-646

Radiation Pattern of Ridged Horn Antenna with Two Flares

Create and view a ridged horn antenna with 2 flares.

ant = hornRidge('NumFlares',2)

ant =
 hornRidge with properties:

 NumFlares: 2
 FlareLength: 0.1784
 FlareWidth: 0.1834
 FlareHeight: 0.1732
 Length: 0.0538
 Width: 0.0370
 Height: 0.0177
 RidgeLength: 0.0370
 RidgeWidth: 0.0050
 RidgeGap: 0.0070
 FeedHoleRadius: 5.0000e-04
 FeedWidth: 1.0000e-04
 FeedOffset: [-0.0076 0]
 Tilt: 0
 TiltAxis: [1 0 0]

 hornRidge

2-647

 Load: [1x1 lumpedElement]

show(ant)

Plot the radiation pattern of the antenna at 11 GHz.

p = PatternPlotOptions('MagnitudeScale',[0 20])

p =
 PatternPlotOptions with properties:

 Transparency: 1
 SizeRatio: 0.9000
 MagnitudeScale: [0 20]
 AntennaOffset: [0 0 0]

figure;
pattern(ant,11e9,'patternOptions',p)

2 Objects

2-648

References

See Also
Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

 hornRidge

2-649

reflectorCylindrical
Create cylindrical reflector-backed antenna

Description
The reflectorCylindrical antenna object creates a cylindrical reflector-backed antenna. The
cylindrical shape of the reflector allows you to focus the signal to the antenna surface. Cylindrical
reflectors are widely used as high-gain apertures fed with line sources and in airborne navigational
antennas where sharp azimuthal beams and wide-angle vertical coverage is required.

Creation

Syntax
ant = reflectorCylindrical
ant = reflectorCylindrical(Name,Value)

Description

ant = reflectorCylindrical creates a cylindrical reflector-backed antenna. The default
cylindrical reflector antenna object has an exciter as a center-fed dipole located on the X-Y plane and
the dimensions are chosen for an operating frequency of around 1 GHz.

ant = reflectorCylindrical(Name,Value) sets “Properties” on page 2-651 using name-value
pairs. For example, reflectorCylindrical('GroundPlaneWidth',0.21) creates a cylindrical
reflector with a width of 0.21 meters. You can specify multiple name-value pairs. Enclose each
property name in quotes. Properties not specified retain their default values.

2 Objects

2-650

Properties
Exciter — Antenna used as exciter
dipole (default) | single-element antenna object

Antenna used as an exciter, specified as a single-element antenna object.
Example: 'Exciter',dipole
Example: ant.Exciter =
dipole('Length',0.1409,'Width',0.02,'FeedOffset',0,'Tilt',90,'TiltAxis',[0 1
0])

GroundPlaneLength — Reflector length
0.2 (default) | positive scalar

Reflector length along X-axis, specified as a positive scalar in meters.
Example: 'GroundPlaneLength',0.6
Example: ant.GroundPlaneLength = 0.18
Data Types: double

GroundPlaneWidth — Reflector width
0.2 (default) | positive scalar

Reflector width along Y-axis, specified as a positive scalar in meters.
Example: 'GroundPlaneWidth',0.4
Example: ant.GroundPlaneWidth = 0.18
Data Types: double

Spacing — Distance between reflector and exciter
0.075 (default) | scalar

Distance between reflector and exciter, specified as a scalar in meters.
Example: 'Spacing',0.059
Example: ant.Spacing = 0.195
Data Types: double

Depth — Perpendicular distance between ground plane and reflector aperture
0.075 (default) | positive scalar

Perpendicular distance between the ground plane and the aperture of the cylindrical reflector,
specified as a positive scalar in meters.
Example: 'Depth',0.09
Example: ant.Depth = 0.049

Note Depth should be less than or equal to half of the “GroundPlaneLength” on page 2-0 .

Data Types: double

 reflectorCylindrical

2-651

Enable Probe Feed — Flag to enable probe feed
0 (default) | 1

Flag to enable the probe feed, specified as 0 or 1 . Setting the flag to 0 disables the probe feed, and
setting the flag to 1 enables it.
Example: 'EnableProbeFeed',1
Example: ant.EnableProbeFeed = 1
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

2 Objects

2-652

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelements, where lumpedelements is the load added to the antenna
feed.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
design Design prototype antenna or arrays for resonance at specified frequency
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array

Examples

Design Cylindrical Reflector with Default Properties

Create a cylindrical reflector antenna object with default properties.

ant = reflectorCylindrical;

View the antenna object.

show(ant)

 reflectorCylindrical

2-653

Use Rounded Bow-Tie Dipole Antenna as Exciter

Create a reflectorCylindrical antenna object with a rounded bow-tie dipole antenna as an
exciter.

b = bowtieRounded('Length',96e-3,'Tilt',90,'TiltAxis',[0 1 0]);
r = reflectorCylindrical('Exciter',b,'Spacing',100e-3);

View the antenna object.

figure
show(r)

2 Objects

2-654

Plot the radiation pattern at 1.5 GHz.

figure
pattern(r,1.5e9)

 reflectorCylindrical

2-655

Enable the probe feed for the reflectorCylindrical antenna object.

re = reflectorCylindrical('Exciter',b,'Spacing',100e-3,'EnableProbeFeed',1);

View the antenna object with the probe feed enabled.

figure
show(re)

2 Objects

2-656

Plot the radiation pattern of the antenna object at 1.5 GHz with the probe feed enabled.

figure
pattern(re,1.5e9)

 reflectorCylindrical

2-657

References
[1] Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley,

2005.

See Also
reflector | reflectorCircular | reflectorCorner | reflectorGrid |
reflectorParabolic | reflectorSpherical

Topics
“Design and Analyze Curved Reflectors”
“Rotate Antennas and Arrays”

Introduced in R2020b

2 Objects

2-658

reflectorSpherical
Create spherical reflector-backed antenna

Description
The reflectorSpherical antenna object creates a spherical reflector-backed antenna. The
reflector in the spherical reflector-backed antenna is one-half the size of the sphere. The antenna is
used in wide-angle scanning on account of its perfectly symmetrical geometric configuration.

Creation
Syntax
ant = reflectorSpherical
ant = reflectorSpherical(Name,Value)

Description

ant = reflectorSpherical creates a spherical reflector-backed antenna. The default antenna
object has an exciter as a center-fed dipole located on the X-Y plane. The default antenna object
dimensions are chosen for an operating frequency of 1 GHz.

ant = reflectorSpherical(Name,Value) sets “Properties” on page 2-659 using name-value
pairs. For example, reflectorSpherical('Radius',0.6) sets the spherical reflector radius to
0.6 meters. You can specify multiple name-value pairs. Enclose each property name in quotes.
Properties not specified retain their default values.

Properties
Exciter — Antenna used as exciter
dipole (default) | single-element antenna object

 reflectorSpherical

2-659

Antenna used as an exciter, specified as a single-element antenna object like dipole, horn and so
on.
Example: 'Exciter',dipole
Example: ant.Exciter =
dipole('Length',0.1409,'Width',0.02,'FeedOffset',0,'Tilt',90,'TiltAxis',[0 1
0])

Radius — Radius of spherical aperture
0.15 (default) | positive scalar

Radius of the spherical reflector aperture along X and Y-axes, specified as a positive scalar in meters.
Example: 'Radius',0.259
Example: ant.Radius = 0.195
Data Types: double

FeedOffset — Signed distance between feed point and origin
[0 0 0.075] (default) | three-element vector

Signed distance between feed point of the exciter and the origin, specified as a three-element vector
with each element unit in meters.
Example: 'FeedOffset',[0 0 0.082]
Example: ant.FeedOffset = [0 0 0.082]
Data Types: double

Depth — Perpendicular distance between origin and aperture of antenna
0.15 (default) | positive scalar

Perpendicular distance between origin and the aperture of the spherical reflector-backed antenna,
specified as a positive scalar in meters.
Example: 'Depth',0.6
Example: ant.Depth = 0.18

Note Depth should be less than or half the “Radius” on page 2-0 .

Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.

2 Objects

2-660

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Note The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. You can add a
load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedelements, where lumpedelements is the load added to the antenna
feed.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
show Display antenna or array structure; display shape as filled patch
impedance Input impedance of antenna; scan impedance of array
sparameters S-parameter object
returnLoss Return loss of antenna; scan return loss of array
vswr Voltage standing wave ratio of antenna
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
axialRatio Axial ratio of antenna

 reflectorSpherical

2-661

beamwidth Beamwidth of antenna
current Current distribution on metal or dielectric antenna or array surface
charge Charge distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
mesh Mesh properties of metal or dielectric antenna or array structure
design Design prototype antenna or arrays for resonance at specified frequency
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array

Examples

Design Spherical Reflector-Backed Antenna with Default Properties

Create a spherical reflector-backed antenna object with default properties.

ant = reflectorSpherical

ant =
 reflectorSpherical with properties:

 Exciter: [1x1 dipole]
 Radius: 0.1500
 Depth: 0.1500
 FeedOffset: [0 0 0.0750]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

View the antenna.

show(ant)

2 Objects

2-662

Plot S-Parameter of Spherical Reflector-Backed Dipole Antenna

Create a spherical reflector-backed antenna with a dipole as an exciter spaced at 90 millimeters.

rs = reflectorSpherical;
rs.FeedOffset(3) = 90e-3;

Visualize the antenna.

figure
show(rs)

 reflectorSpherical

2-663

Plot the S-parameters at 1 GHz.

s = sparameters(rs,(9:0.1:11)*1e9);
figure
rfplot(s)

2 Objects

2-664

Plot Radiation Pattern of Spherical Reflector-Backed Waveguide Antenna

Create a waveguide designed at 10 GHz backed with a spherical reflector.

w = design(waveguide,10e9);
rs = reflectorSpherical('Exciter',w);
rs.Exciter.Tilt = 90;
rs.Exciter.TiltAxis = [0 1 0];

Visualize the antenna.

figure
show(rs)

 reflectorSpherical

2-665

Plot the radiation pattern at 10 GHz.

figure
pattern(rs,10e9)

2 Objects

2-666

References
[1] Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley,

2005.

See Also
reflector | reflectorCircular | reflectorCorner | reflectorCylindrical |
reflectorGrid | reflectorParabolic

Topics
“Design and Analyze Curved Reflectors”
“Rotate Antennas and Arrays”

Introduced in R2020b

 reflectorSpherical

2-667

biconeStrip
Create strip bicone antenna

Description
The biconeStrip object creates a strip bicone antenna. The strip bicone antenna is an
approximation of a solid bicone antenna, where strips are used to approximate the two cones. The
strip configuration makes these antennas lightweight and reduces wind loading. These antennas are
more suitable for use at low frequencies. Strip bicone antennas are popular for their wide-impedance
bandwidth and omnidirectional radiation coverage. These antennas are used in applications like
emission testing, field monitoring, and chamber characterization.

There are two types of bicone strip antennas, open-ended and phantom biconical. Specify the
“HatHeight” on page 2-0 property to create a phantom strip bicone antenna.

Creation

Syntax
ant = biconeStrip
ant = biconeStrip(Name,Value)

Description

ant = biconeStrip creates a strip bicone antenna with dimensions for a resonant frequency of
363.2 MHz.

ant = biconeStrip(Name,Value) sets “Properties” on page 2-669 using one or more
name-value pairs. For example, ant = biconeStrip('NumStrips',8) creates a strip bicone
antenna with eight strips.

2 Objects

2-668

Properties
NumStrips — Number of strips to form cones
16 (default) | scalar in the range [6,64]

Number of strips to form the two cones of strip bicone antenna, specified a scalar integer in the
range [6,64].
Example: 'NumStrips',8
Example: ant.NumStrips = 8
Data Types: double

StripWidth — Width of strip
18e-3 (default) | positive scalar

Width of each strip, specified as positive scalar in meters.
Example: 'StripWidth',0.02
Example: ant.StripWidth = 0.02
Data Types: double

HatHeight — Vertical height of hats
0 (default) | scalar | two-element vector

Vertical height of the two hats, specified as either of the following:

• 0— This creates open-ended strip bicone antenna.
• Positive scalar in meters— This creates two cone hats of same height.
• Two-element vector with each element unit in meters— This creates two cone hats of different

heights. In the two-element vector, the first element specifies the hat height of the top cone, and
the second element specifies the hat height of the bottom cone.

Example: 'HatHeight',0.045
Example: ant.HatHeight = 0.045
Data Types: double

ConeHeight — Vertical height of cones
665e-3 (default) | scalar | two-element vector

Vertical height of the two cones, specified as either of the following:

• Positive scalar in meters: This creates two cones of same height.
• Two-element vector with each element unit in meters: This creates two cones of different heights.

In the two-element vector, the first element specifies the height of the top cone, and the second
element specifies the height of the bottom cone.

Example: 'ConeHeight',0.5
Example: ant.ConeHeight = 0.5
Data Types: double

 biconeStrip

2-669

NarrowRadius — Radius of apex
70e-3 (default) | scalar | two-element vector

Radius at the apex of the cones, specified as either of the following:

• Positive scalar in meters: This creates two cones with the same narrow radius.
• Two-element vector with each element unit in meters: This creates two cones with different

narrow radii. In the two-element vector, the first element specifies the narrow radius of the top
cone, and the second element specifies the narrow radius of the bottom cone.

Example: 'NarrowRadius',0.04
Example: ant.NarrowRadius = 0.04
Data Types: double

BroadRadius — Radius at broad opening of cone
647e-3 (default) | scalar | two-element vector

Radius at the broad opening of the cones, specified as either of the following:

• Positive scalar in meters: This creates two cones with the same broad radius.
• Two-element vector with each element unit in meters: This creates two cones with different broad

radii. In the two-element vector, the first element specifies the broad radius of the top cone, and
the second element specifies the broad radius of the bottom cone.

Example: 'BroadRadius',0.7
Example: ant.BroadRadius = 0.7
Data Types: double

FeedHeight — Height of feed
45e-3 (default) | positive scalar

Height of the feed spanning the gap between the two cones, specified as positive scalar in meters.
Example: 'FeedHeight',0.04
Example: ant.FeedHeight = 0.04
Data Types: double

FeedWidth — Width of feed
40e-3 (default) | positive scalar

Width of the feed of the antenna, specified as a positive scalar in meters.
Example: 'FeedWidth',0.03
Example: ant.FeedWidth = 0.03
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.

2 Objects

2-670

Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.
Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement. lumpedElement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
coneangle2size Calculates equivalent cone height, broad radius, and narrow radius for cone
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer

 biconeStrip

2-671

pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna
element in array

patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create Open-ended Strip Bicone Antenna

Create a strip bicone antenna with default properties.

ant = biconeStrip

ant =
 biconeStrip with properties:

 NumStrips: 16
 StripWidth: 0.0180
 HatHeight: 0
 ConeHeight: 0.6650
 NarrowRadius: 0.0700
 BroadRadius: 0.6470
 FeedHeight: 0.0450
 FeedWidth: 0.0400
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

View the antenna using the show function.

show(ant);

2 Objects

2-672

Plot the S-parameters of the antenna over the frequency span of 150-550 MHz.

s = sparameters(ant,linspace(150e6,550e6,101));
rfplot(s)

 biconeStrip

2-673

Create Strip Bicone Antenna with Hat

Create a strip bicone antenna with hat.

ant = biconeStrip("NumStrips",6,"StripWidth",12e-3,"HatHeight",53e-3, ...
 "ConeHeight",465e-3,"NarrowRadius",40e-3,"BroadRadius",257e-3, ...
 "FeedHeight",144e-3,"FeedWidth",25e-3);

View the antenna using the show function.

show(ant)

2 Objects

2-674

Calculate antenna impedance over the frequency span of 10-300 MHz.

impedance(ant,10e6:10e6:300e6)

 biconeStrip

2-675

More About
Parametric Analysis Guidelines

To understand how the properties of the biconeStrip antenna object influence the antenna design,
use the following parametric analysis guidelines.

• To increase the operating frequency, decrease the dimensions of the biconeStrip antenna.
• To increase the impedance bandwidth, use the “NumStrips” on page 2-0 property to

increase the number of strips in the biconeStrip antenna object.
• To improve average input impedance, decrease the narrow radii and feed height of the antenna

using the “NarrowRadius” on page 2-0 and the “FeedHeight” on page 2-0
properties.

References
[1] Brian A. Austin, Andre P. C. Fourie "Characteristics of the Wire Biconical Antenna Used for EMC

Measurements", IEEE Transaction on Electromagnetic Compatibility, vol. 33, no. 3, August
1991.

See Also
bicone | discone | disconeStrip

2 Objects

2-676

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

 biconeStrip

2-677

hornCorrugated
Create rectangular corrugated-horn antenna

Description
The hornCorrugated object creates a rectangular corrugated-horn antenna with grooves on the
inner walls of the flare. These antennas provide spillover reduction and have beam symmetry and a
low sidelobe level, so they are widely used as a feed in reflector antennas in broadcasting
communications.

Creation
Syntax
ant = hornCorrugated
ant = hornCorrugated(Name,Value)

Description

ant = hornCorrugated creates a rectangular corrugated-horn antenna for a resonant frequency of
15.28 GHz.

ant = hornCorrugated(Name,Value) sets “Properties” on page 2-678 using one or more name-
value pairs. For example, ant = hornCorrugated('FlareLength', 0.045) creates a
rectangular corrugated-horn antenna with the flare length of the horn set to 45 mm.

Properties
FlareLength — Flare length of horn
0.0428 (default) | positive scalar

2 Objects

2-678

Flare length of the horn, specified as a positive scalar in meters.
Example: 'FlareLength',0.35
Data Types: double

FlareWidth — Flare width of horn
0.09 (default) | positive scalar

Flare width of the horn, specified as a positive scalar in meters.
Example: 'FlareWidth',0.2
Data Types: double

FlareHeight — Flare height of horn
0.06 (default) | positive scalar

Flare height of the horn, specified as a positive scalar in meters.
Example: 'FlareHeight',0.15
Data Types: double

Length — Length of rectangular waveguide
0.0229 (default) | positive scalar

Length of the rectangular waveguide, specified as a positive scalar in meters.
Example: 'Length',0.09
Data Types: double

Width — Width of rectangular waveguide
0.0102 (default) | positive scalar

Width of the rectangular waveguide, specified as a positive scalar in meters.
Example: 'Width',0.05
Data Types: double

Height — Height of rectangular waveguide
0.0075 (default) | positive scalar

Height of the rectangular waveguide, specified as a positive scalar in meters.
Example: 'Height',0.0200
Data Types: double

FeedHeight — Height of feed
0.0037 (default) | positive scalar

Height of the feed, specified as a positive scalar in meters.
Example: 'FeedHeight',0.0050
Data Types: double

FeedWidth — Width of feed
0.00008 (default) | positive scalar

 hornCorrugated

2-679

Width of the feed, specified as a positive scalar in meters.
Example: 'FeedWidth',5e-05
Data Types: double

FeedOffset — Signed distance of feedpoint from center of ground plane
[–0.0020 0] (default) | two-element vector

Signed distance of the feedpoint from the center of the ground plane, specified as a two-element
vector in meters.
Example: 'FeedOffset',[–0.0070 0.01]
Data Types: double

Pitch — Distance between two successive corrugations
0.0060 (default) | positive scalar

Distance between two successive corrugations, specified as a positive scalar in meters.
Example: 'Pitch',0.0060
Example: ant.Pitch = 0.0090
Data Types: double

FirstCorrugatedDistance — Distance of first corrugation from waveguide
0.016 (default) | positive scalar

Distance of the first corrugation from the waveguide, specified as a positive scalar in meters.
Example: 'FirstCorrugatedDistance',0.0360
Example: ant.FirstCorrugatedDistance = 0.0190
Data Types: double

CorrugateWidth — Corrugation width
0.003 (default) | positive scalar

Corrugation width, specified as a positive scalar in meters.
Example: 'CorrugateWidth',0.0058
Example: ant.CorrugateWidth = 0.0019
Data Types: double

CorrugateDepth — Corrugation depth
[0.0050 0.0100] (default) | two-element vector

Corrugation depth, specified as a two-element vector in meters. The first element corresponds to the
width along E-plane, and the second element corresponds to the width along the H-plane.
Example: 'CorrugateDepth',[0.006 0.0560]
Example: ant.CorrugateDepth = [0.0050 0.0790]
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

2 Objects

2-680

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.
Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement. lumpedElement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic

fields of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure

 hornCorrugated

2-681

numCorrugationsToPitch Calculate pitch for specified corrugations
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of

antenna element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or

array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create Rectangular Corrugated-Horn Antenna and Plot Radiation Pattern

Create a default rectangular corrugated-horn antenna.

ant = hornCorrugated

ant =
 hornCorrugated with properties:

 FlareLength: 0.0428
 FlareWidth: 0.0900
 FlareHeight: 0.0600
 Length: 0.0229
 Width: 0.0102
 Height: 0.0075
 FeedWidth: 8.0000e-05
 FeedHeight: 0.0037
 FeedOffset: [-0.0020 0]
 FirstCorrugateDistance: 0.0160
 CorrugateDepth: [0.0050 0.0100]
 CorrugateWidth: 0.0030
 Pitch: 0.0060
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

View the antenna using the show function.

show(ant)

2 Objects

2-682

Plot the radiation pattern of the antenna at a frequency 15.28 GHz.

p = PatternPlotOptions('MagnitudeScale',[-15 10]);
pattern(ant,15.28e9,'patternOptions',p)

 hornCorrugated

2-683

References
[1] Encinar, J., and J. Rebollar. “A Hybrid Technique for Analyzing Corrugated and Noncorrugated

Rectangular Horns.” IEEE Transactions on Antennas and Propagation, vol. 34, no. 8, Aug.
1986, pp. 961–68.

See Also
horn | hornConical | hornConicalCorrugated | waveguide

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

2 Objects

2-684

monopoleCustom
Create customized monopole antenna

Description
The monopoleCustom object creates a monopole radiator of any shape using the antenna.Shape
class. The ground plane can take any shape. You can create any arbitrarily shaped monopole and
analyze it for field, surface, and port characteristics. Monopole antennas have a simple structure and
provide omnidirectional radiation patterns with wide impedance bandwidth. Monopole antennas are
commonly used in airborne and ground-based communication systems.

Creation

Syntax
ant = monopoleCustom
ant = monopoleCustom(Name,Value)

Description

ant = monopoleCustom creates a default monopole antenna with a square radiator and a circular
ground plane. The feed point is at the origin in the X-Y plane. The default antenna resonates at an
operating frequency of 1.24 GHz.

ant = monopoleCustom(Name,Value) sets “Properties” on page 2-685 using one or more name-
value pairs. For example, ant = monopoleCustom('RadiatorTilt',90) creates a monopole
antenna with tilt angle of the radiator at 90 degrees on the z-axis.

Properties
Radiator — Type of radiator
antenna.Rectangle object (default) | antenna.Polygon object

 monopoleCustom

2-685

Type of radiator, specified as an antenna.Polygon object. You can specify any shape for the
radiator. The feed strip is a part of the radiator. By default, the radiator is square in shape with a side
length of 40e-3 meters. The feed strip is 2e-3 meters in length and 2.5e-3 meters in width at the edge
of the radiator.

GroundPlane — Type of ground plane
antenna.Circle (default) | antenna.Polygon object

Type of ground plane, specified as an antenna.Polygon object. You can specify any shape for the
ground plane. By default, the ground plane is circular in shape with a radius of 150e-3 meters.

FeedOffset — Signed distance from center along length and width of ground plane
[0 0] (default) | two-element vector

Signed distance from the center along the length and the width of the ground plane, specified as a
two-element vector in meters.
Example: 'FeedOffset',[2 1]
Data Types: double

RadiatorTilt — Tilt angle of radiator
0 (default) | scalar

Tilt angle of the radiator, specified as a scalar in degrees.
Data Types: double

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.
Data Types: double

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]

2 Objects

2-686

Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object handle. You can
add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more
information, see lumpedElement.
Example: 'Load',lumpedElement. lumpedElement is the object handle for the load created using
lumpedElement.
Example: ant.Load = lumpedElement('Impedance',75)

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
optimize Optimize antenna or array using SADEA optimizer
pattern Plot antenna radiation pattern on map
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create Disc Monopole Antenna on Square Ground Plane

Create a disc monopole with a of radius 25 mm, on a square ground plane of 30 cm, and with a feed
gap of 0.7 mm.

 Rad = antenna.Circle('Radius',25e-3);
 FeedStrip = antenna.Rectangle('Length',1e-3,'Width',0.7e-3, ...
 'Center',[0 -(Rad.Radius+(0.7e-3)*0.3)]);
 m = monopoleCustom;
 m.Radiator = Rad+FeedStrip;
 m.GroundPlane = antenna.Rectangle('Length',300e-3,'Width',300e-3);

View the antenna using the show function.

 show(m);

 monopoleCustom

2-687

Plot the radiation pattern of the antenna at 2.05 GHz.

p = PatternPlotOptions('MagnitudeScale',[-40 5]);
pattern(m,2.05e9,'patternOptions',p);

2 Objects

2-688

References
[1] Ammann, M. J. “Square Planar Monopole Antenna.” IEE National Conference on Antennas and

Propagation, vol. 1999, IEE, pp. 37–40.

[2] Weiner, M. “Monopole Element at the Center of a Circular Ground Plane Whose Radius Is Small or
Comparable to a Wavelength.” IEEE Transactions on Antennas and Propagation, vol. 35, no.
5, pp. 488–495.

[3] N. P. Agrawall, G. Kumar and K. P. Ray, "Wide-band planar monopole antennas," in IEEE
Transactions on Antennas and Propagation, vol. 46, no. 2, pp. 294-295.

See Also
monopole | monopoleRadial | monopoleTopHat

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

 monopoleCustom

2-689

rhombic
Create a rhombic antenna

Description
The rhombic object creates a rhombic antenna. It consists of a rhombus with a feed at one acute
angles and a termination resistor at the other acute angle. It has a simple design and is highly
directional. These antennas are used in shortwave radio broadcasting and point-to-point
communications.

Creation

Syntax
ant = rhombic
ant = rhombic(Name,Value)

Description

ant = rhombic creates a rhombic antenna. The dimensions are chosen for resonant frequency of
515 MHz. The default rhombic antenna is fed at one acute angle and the other acute angle is
terminated with a load of 500 ohms.

ant = rhombic(Name,Value) sets “Properties” on page 2-691 using one or more name-value
pairs. For example, ant = rhombic('ArmLength', 3) creates a rhombic antenna with an arm of
length 3 meters.

2 Objects

2-690

Properties
ArmLength — Length of arm
2 (default) | positive scalar

Length of each of the rhombus, specified as a scalar in meters.
Data Types: double

ArmElevation — Angle between adjacent arms at feed
20 (default) | positive scalar

The acute angle between the adjacent arms at the feed location, specified as a scalar in degrees.
Data Types: double

Width — Width of arm
0.1 (default) | positive scalar

Width of the arm of the rhombus, specified as a scalar in meters.
Data Types: double

Load — Lumped elements
[1x1 lumpedElement] (default) | lumpedElement object

Lumped elements added to the antenna feed, specified as a lumpedElement object. The load
element is located opposite the feed at one of the acute angles of the rhombus. For more information,
see lumpedElement.
Example: 'Load',lumpedElement, where lumpedElement is the where lumpedElement is the
load added to the antenna feed.
Example: ant.Load = lumpedElement('Impedance',75)

TiltAxis — Tilt axis of antenna
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the antenna, specified as:

• Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the
vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the antenna rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: ant.TiltAxis = 'Z'

Tilt — Tilt angle of antenna
0 (default) | scalar | vector

 rhombic

2-691

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90
Example: ant.Tilt = 90
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the
two axes defined by the vectors.
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
rcs Calculate and plot radar cross section (RCS) of platform, antenna, or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
vswr Voltage standing wave ratio of antenna

Examples

Create Default Rhombic Antenna and Plot Radiation Pattern

Create a default rhombic antenna.

ant = rhombic

ant =
 rhombic with properties:

 ArmLength: 2
 ArmElevation: 20
 Width: 0.1000
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

View the antenna using the show function.

show(ant);

2 Objects

2-692

Plot the radiation pattern of the antenna at 515 MHz.

pattern(ant, 515e6);

 rhombic

2-693

References
[1] Decker, R. “The Influence of Gain and Current Attenuation on the Design of the Rhombic

Antenna.” IRE Transactions on Antennas and Propagation 7, no. 2 (April 1959): 188–196.

See Also
biquad | dipole | dipoleVee

Topics
“Rotate Antennas and Arrays”

Introduced in R2020b

2 Objects

2-694

PCBReader
Import and update Gerber files

Description
Use the PCBReader object to create a printed circuit board (PCB) reader to import Gerber files and
to facilitate the creation of an antenna model. A Gerber file is a set of manufacturing files used to
describe a PCB antenna. A Gerber file uses an ASCII vector format to describe 2-D binary images.

Creation
You can create a PCBReader object using the following methods:

• gerberRead — Create a PCBReader object with the specified Gerber and drill files.
• The PCBReader function described here.

Syntax
B = PCBReader(S)
B = PCBReader(Name,Value)

Description

B = PCBReader(S) creates a PCBReader object that imports multilayer PCB antenna design files
described in the stackUp object .

Note The PCBReader object reads RS-274X Gerber files. It does not support RS-274D Gerber files.

B = PCBReader(Name,Value) sets “Properties” on page 2-696 using name-value pairs. For
example, B = PCBReader('StackUp',S,'Drillfile','ant.txt') imports the layer and drill
files into the PCBReader. You can specify multiple name-value pairs. Enclose each property name in
quotes. Properties not specified retain their default values.

Input Arguments

S — PCB stackup definition
stackUp object

PCB stackup definition, specified as a stackUp object. For more information, see stackUp.
Example: S = stackUp; B = PCBReader(S)
Example: B = PCBReader('StackUp',S)

 PCBReader

2-695

Properties
StackUp — PCB stackup definition
stackUp object

PCB stackup definition, specified as a stackUp object.
Example: S = stackUp; B.StackUp = S;
Example: B = PCBReader('StackUp',S)

DrillFile — Name of Excellon drill file
[] (default) | character vector | string scalar

Name of Excellon drill file, specified as a character vector or string scalar. You can specify either a
DRL or a TXT file.
Example: B.DrillFile = 'ant.drl'

NumPointsOnCurves — Discretization points on curved segments
50 (default) | positive scalar

Discretization points on curved segments, specified as a positive scalar.
Example: B.NumPointsOnCurves = 80

Object Functions
pcbStack Single-feed or multifeed PCB antenna
shapes Extract and modify metal layers from PCBReader object

Examples

Import Gerber Files Using PCB Stackup Definition

Create a default PCB stackup definition object.

S = stackUp;

Set the thickness of the dielectric Air in layer 1 and layer 5 of the stackUp object to 0.1 mm.

S.Layer1.Thickness = 0.1e-3;
S.Layer5.Thickness = 0.1e-3;

Import a top layer Gerber file to layer 2.

S.Layer2 = 'antenna_design_file.gtl';

Import a bottom layer Gerber file to layer 4.

S.Layer4 = 'antenna_design_file.gbl';

Create a PCBReader object, B, using the stackUp object, S.

B = PCBReader('StackUp',S);

2 Objects

2-696

Update and Analyze Imported Gerber File

Create a default PCB stackup definition object.

s = stackUp;

Import a top layer Gerber file to layer 2.

s.Layer2 = 'patchMicrostripCircular_design_file.gtl';

Create a PCBReader object using the stackUp object.

p = PCBReader('StackUp',s);

To update the Gerber file, convert the PCBReader object to a pcbStack object.

p3 = pcbStack(p);

View the pcbStack object.

figure
show(p3)

Update the feed diameter.

p3.FeedDiameter = 0.005;

 PCBReader

2-697

View the updated pcbStack object.

figure
show(p3)

Plot the current distribution on the antenna.

figure
current(p3,2.4e9)

2 Objects

2-698

Extract Metal from Two-Layer Design PCBReader Object

Create a PCBReader object.

B = PCBReader;

Import a two-layer design.

st = B.StackUp;
st.Layer2 = 'UWBVivaldi.gtl';
st.Layer4 = 'UWBVivaldi.gbl';
B.StackUp = st;

Extract shapes from the metal layers.

S = shapes(B);

View the top-layer Gerber file.

figure
show(S(1))

 PCBReader

2-699

View the bottom-layer Gerber file.

figure
show(S(2))

2 Objects

2-700

See Also
PCBConnectors | PCBServices | PCBWriter | gerberRead | pcbStack | stackUp

Topics
“Create Antenna Model from Gerber Files”

Introduced in R2020b

 PCBReader

2-701

stackUp
Create PCB stackup definition

Description
Use the stackUp object to create a printed circuit board (PCB) stackup definition to import Gerber
files. A Gerber file is a set of manufacturing files used to describe a PCB antenna. A Gerber file uses
an ASCII vector format for 2-D binary images.

Creation

Syntax
s = stackUp

Description

s = stackUp creates a default PCB stackup object with five layers. Specify Gerber files as inputs to
the second and fourth layers. Specify dielectric material objects as inputs to layers one, three, and
five.

Properties
NumLayers — Number of layers in stackup
5 (default) | positive scalar

This property is read-only.

Number of layers in the stackup, returned as a positive scalar.

Layer1 — First layer in stackup
'Air' (default) | dielectric object

First layer in the stackup definition object, specified as a dielectric object.
Example: s = stackUp; d = dielectric('RO4725JXR'); s.Layer1 = d;

Layer2 — Second layer in stackup
character vector | string scalar

Second layer in the stackup definition object, specified as a character vector or string. The file should
be saved as a GTL, GBL, or GBR file.
Example: s = stackUp; s.Layer2 = 'antenna_design_file.gtl';

Note The Gerber file must be imported to the MATLAB® workspace before setting this property.

2 Objects

2-702

Layer3 — Third layer in stackup
'FR4' (default) | dielectric object

Third layer in the stackup definition object, specified as a dielectric object.
Example: s = stackUp; d = dielectric('RO4725JXR'); s.Layer3 = d;

Layer4 — Fourth layer in stackup
character vector | string scalar

Fourth layer in the stackup definition object, specified as a character vector or string. The file should
be saved as a GTL, GBL, or GBR file.
Example: s = stackUp; s.Layer4 = 'antenna_design_file.gbl';

Note The Gerber file must be imported to the MATLAB workspace before setting this property.

Layer5 — Fifth layer in stackup
'Air' (default) | dielectric object

Fifth layer in the stackup definition object, specified as a dielectric object.
Example: s = stackUp; d = dielectric('RO4725JXR'); s.Layer5 = d;

Note The Gerber file must be imported to MATLAB workspace before executing the above command.

Examples

Create PC Board Stackup Definition

Create a default PCB stackup definition object.

s = stackUp;

Create a dielectric object with Air as the dielectric material and with a thickness of 0.1 mm.

d1 = dielectric('Name','Air','Thickness',0.1e-3);

Create another dielectric object with RO4725JXR as the dielectric material.

d3 = dielectric('Name','RO4725JXR');

Assign the dielectrics to the first and third layers.

s.Layer1 = d1;
s.Layer3 = d3;

Input Gerber files to the second and fourth layers.

s.Layer2 = 'antenna_design_file.gtl';
s.Layer4 = 'antenna_design_file.gbl';

Display the stackup definition object.

 stackUp

2-703

s

s =
 stackUp with properties:

 NumLayers: 5
 Layer1: [1x1 dielectric]
 Layer2: 'antenna_design_file.gtl'
 Layer3: [1x1 dielectric]
 Layer4: 'antenna_design_file.gbl'
 Layer5: [1x1 dielectric]

See Also
DielectricCatalog | PCBReader | dielectric | gerberRead | shapes

Topics
“Create Antenna Model from Gerber Files”

Introduced in R2020b

2 Objects

2-704

Apps

3

Antenna Designer
Design, visualize, and analyze antennas

Description
The Antenna Designer app lets you design, visualize, and analyze antennas in the Antenna Toolbox
library interactively.

Using this app, you can:

• Select antennas based on general properties or antenna performance.
• Select backing structures from the gallery of backing structures.
• Visualize antennas based on frequency and frequency range.
• Analyze antennas based on radiation pattern, polarization, and bandwidth.
• Export selected and designed antennas as a variable to the MATLAB workspace, as either script or

a variable. The exported MATLAB script has two sections: Antenna Properties and Antenna
Analysis.

• Save and load an existing antenna .mat file to the app and analyze the antenna.
• Optimize antennas for various analysis results under given constraints using SADEA or Surrogate

optimization methods.

Note

• To use Parallel Computing for SADEA optimizer, you need the Parallel Computing Toolbox™.

To use the Surrogate optimization algorithm, you need the Global Optimization Toolbox.

3 Apps

3-2

Open the Antenna Designer App
• MATLAB Toolstrip: In the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter antennaDesigner.

Examples

Antenna Designer Canvas

The Antenna Designer opens a blank canvas.

 Antenna Designer

3-3

1 Select and Visualize Antenna

• Click

in the canvas toolstrip to choose the antenna you want to analyze.
• The default antenna is a dipole antenna.
•

You can filter the antennas based on Radiation pattern, Polarization, and Bandwidth.
• Using the toolstrip you can also add Cavity backing, or Reflector backing to the antennas.
• You can also specify the Design Frequency of the antenna. Setting this value scales the

antenna to resonate at the specified frequency. You can also tune the antenna using Antenna
Properties tab during analysis.

• Use Reset, to go back to default settings.
• Use Accept, to analyze the antenna characteristics.

3 Apps

3-4

• Use Cancel, to start over.
2 Antenna Gallery

• You can choose your antennas from the ANTENNA GALLERY.

• When you filter antennas based on Radiation pattern, Polarization, or Bandwidth, the
antenna gallery greys out the antennas that do not belong to the chosen filter.

3 Back Structure Gallery

• You can choose your antenna backing structures from the BACKING STRUCTURE
GALLERY.

 Antenna Designer

3-5

4 Analyze Antenna

•

You can plot the Impedance and S Parameter of the antenna based on the specified
Frequency Range in Hz.

3 Apps

3-6

• You can visualize the Current distribution on the antenna based on the specified Frequency
in Hz.

• You can visualize the 3D Pattern, AZ Pattern, EL Pattern of the antenna based on the
specified frequency. Here AZ stands for azimuth and EL stands for elevation.

• Use Export to view your antenna in MATLAB workspace or MATLAB script.
• Manually change the antenna properties using the Antenna Properties tab. In this tab, you

can change the geometrical properties of the antenna, add a dielectric substrate to the
antenna, and change the value and location of the load.

5 Optimize Antenna

• Click on Optimize to open the optimizer canvas of the antenna designer app.

Use the OBJECTIVE FUNCTIONto choose the main goal of optimizing the antenna.
• Use the Design Variables to input the variables The variables are then changed by the

optimizer depending on the lower and upper bounds.
• Use Constraints functions to restrict a desired analysis function value on the antenna.
• Use the Optimizer to choose between SADEA or Surrogate Opt.

Note

• To use Parallel Computing for SADEA optimizer, you need the Parallel Computing
Toolbox.

To use the Surrogate optimization algorithm, you need the Global Optimization Toolbox.
• After adding the required values, click Run to start the optimization.

 Antenna Designer

3-7

Plot Radiation Pattern of Cavity-Backed Dipole

Use the Antenna Designer app to plot the radiation pattern of a cavity-backed dipole antenna.

Open the app and click New to show the default dipole antenna.

From the BACKING STRUCTURE GALLERY, click Rectangular Cavity to create a cavity-backed
dipole antenna.

Click Accept.

In SCALAR FREQUENCY ANALYSIS, click 3D Pattern to calculate the radiation pattern of the
cavity-backed dipole. The default frequency used is 75 MHz. Click Tile to view both the antenna and
the radiation pattern.

3 Apps

3-8

Analyze Patch Microstrip Antenna Having Dielectric Substrate

Use the Antenna Designer app to plot the radiation pattern of a patch microstrip antenna with a
dielectric substrate.

Open the app and click New. In the ANTENNA GALLERY section, under PATCH FAMILY, click
Microstrip. Click Accept.

On the Antenna Properties tab, change the groundplane length and groundplane width to 0.120 m.
Click Apply to see the changes.

 Antenna Designer

3-9

Add an FR4 dielectric as a substrate to the patch microstrip antenna. To add the dielectric, open the
Substrate section and hover over the Name tab to see the Dielectric Catalog. Set the
substrate Name to FR4, EpsilonR to 4.8000, and Loss Tangent to 0.0260. Click Apply to see the
antenna.

3 Apps

3-10

Click 3D Pattern to plot the radiation pattern of the antenna at the default frequency of 1.67 GHz.

 Antenna Designer

3-11

Export, Save, Load and Analyze Discone Antenna

Create and export a discone antenna using Antenna Designer app.

3 Apps

3-12

In the Matlab workspace, you will see the exported antenna. This is in the form of a .mat file.

Change the parameters of the antenna to the below given values at the Matlab command line and
save the .mat file again to a known folder.

Rd=55e-3; % Radius of disc
Rc1=72.1e-3; % Broad Radius of cone
Rc2=1.875e-3; % Narrow Radius of cone
Hc=160e-3; % Vertical height of cone
Fw=1e-3; % Feed Width
S=1.75e-3; % Spacing between cone and disc

Open the updated .mat file of the discone antenna using the open antenna designer app.

 Antenna Designer

3-13

The app will overwrite the previous discone antenna design and open the updated discone antenna.

3 Apps

3-14

Calculate the S-parameter of the antenna at the specified frequency range.

 Antenna Designer

3-15

Plot the radiation pattern of the antenna at the specified frequency.

3 Apps

3-16

Minimize Area of Dipole Antenna to Optimize Gain

Minimize the occupied area of a dipole antenna such that gain of the antenna is greater than 4 dBi.

Open Antenna Designer app and accept the default dipole antenna.

 Antenna Designer

3-17

Analyze the pattern of the antenna. Notice that the Max value for directivity in the plot is 2.17 dBi.

3 Apps

3-18

Optimize Dipole Antenna

Click on Optimize to open the Optimizer canvas of the Antenna Designer app.

 Antenna Designer

3-19

From the OBJECTIVE FUNCTION drop down choose, Minimize Area. Enter the bounds for the
length and the width of the antenna in the Design Variables tab. Click Apply.

3 Apps

3-20

Enter the constraints in the Constraints tab. Click Apply.

 Antenna Designer

3-21

Set the number of iterations to 50. Click Run.

First the optimizer builds the model.

3 Apps

3-22

Then starts the optimization based on the objective function and the constraints.

 Antenna Designer

3-23

Click Accept.

Analyze the antenna again for the 3D pattern. See that the Max value of the directivity is now 4.03
dBi.

3 Apps

3-24

Minimize Area of Dipole Antenna to Optimize Gain Using Surrogate Optimization Method

Minimize the occupied area of a dipole antenna such that gain of the antenna is greater than 4 dBi.

Open Antenna Designer app and accept the default dipole antenna.

 Antenna Designer

3-25

Analyze the pattern of the antenna. Notice that the Max value for directivity in the plot is 2.17 dBi.

3 Apps

3-26

Optimize Dipole Antenna

Click on Optimize to open the Optimizer canvas of the Antenna Designer app.

 Antenna Designer

3-27

From the OBJECTIVE FUNCTION drop down choose, Minimize Area. Enter the bounds for the
length and the width of the antenna in the Design Variables tab. Click Apply.

3 Apps

3-28

Enter the constraints in the Constraints tab. Click Apply.

 Antenna Designer

3-29

Change the Optimizer from SADEA to Surrogate Opt. The number iterations is always 200 and
Parallel Computing is greyed out.

Click Run.

The optimization starts based on the objective function and the constraints.

3 Apps

3-30

Click Accept.

Analyze the antenna again for the 3D pattern. See that the Max value of the directivity is now 4.57
dBi.

 Antenna Designer

3-31

• “Design and Analysis Using Antenna Designer App”
• “Maximizing Gain and Improving Impedance Bandwidth of E-Patch Antenna”

Programmatic Use
antennaDesigner opens the Antenna Designer app, enabling you to design, analyze, and optimize
antennas present in the Antenna Toolbox library.

See Also
Topics
“Design and Analysis Using Antenna Designer App”
“Maximizing Gain and Improving Impedance Bandwidth of E-Patch Antenna”
“Antenna Optimization Algorithm”

Introduced in R2017a

3 Apps

3-32

Antenna Array Designer
Design, visualize, and analyze arrays

Description
The Array Designer app lets you design, visualize, and analyze arrays in the Antenna Toolbox library
interactively.

Using this app, you can:

• Show different array configurations and layouts defining element spacing.
• Compare different array types and responses.
• Pick array configuration to meet specific peek gain, directivity, desired coverage, pattern, port

parameters.
• Change the spacing between the elements and see the effect on the performance of the array.
• Visualize the effect of mutual coupling at the port and in the far-field.
• Optimize arrays for various analysis results under given constraints using SADEA or Surrogate

optimization methods.

Note

• To use Parallel Computing for SADEA optimizer, you need the Parallel Computing Toolbox.

To use the Surrogate optimization algorithm, you need the Global Optimization Toolbox.

 Antenna Array Designer

3-33

Open the Antenna Array Designer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter antennaArrayDesigner.

Examples

Antenna Array Designer Canvas

The antenna array designer app opens a new blank canvas:

Select and Visualize an Array

Click in the canvas toolstrip to choose the type of array you want to analyze.

The default is a rectangular array with dipole antennas.

3 Apps

3-34

Using the toolstrip, you can choose different types of array layouts, antennas, and backing structures.

You can also specify the Design Frequency of the antenna or array. Setting this value scales the
individual array elements to resonate at the specified frequency and places the elements at optimal
location in the array to avoid interferences.

Click Accept to analyze the array characteristics.

Galleries

You can select an Array Type from the Array Gallery, and you can choose from different antennas
from the Antenna Gallery.

You can choose different types of antennas from the Antenna Gallery.

You can also choose different types of backing structures for your antenna array elements from the
Backing Structure Gallery.

 Antenna Array Designer

3-35

Analyze Array

Once you have clicked Accept on a design, you can specify the Frequency Range in the Input pane.
Then plot the impedance, correlation, or S-parameters of the array using the corresponding buttons
in the Coupling pane.

You can visualize the 3-D Pattern, AZ Pattern, or EL Pattern of the full array or an embedded element
using the corresponding buttons in the Pattern pane. You can also add dielectric substrates to the
individual elements or change the value and location of the load using the Properties pane.

Use Properties to manually change the properties of the array or its individual elements.

Use Export to view your array in MATLAB workspace or MATLAB script.

Optimize Array

Click on Optimize to open the optimizer canvas of the antenna array designer app.

3 Apps

3-36

Use the OBJECTIVE FUNCTION to choose the main goal of optimizing the array

Use the Design Variables to input the variables. The variables are then changed by the optimizer
depending on the lower and upper bounds.

Use Constraints to restrict a desired analysis function value on the antenna.

Use the Optimizer to choose between SADEA or Surrogate Opt.

Note: To use the Surrogate optimization algorithm, you need the Global Optimization Toolbox.

After adding the required values, click Run to start the optimization.

Linear Dipole Array and Maximum Directivity

Open the Antenna Array Designer app.

antennaArrayDesigner

 Antenna Array Designer

3-37

Click on New and from the Array Type pane, click Linear.

In the bottom left corner, change Number of Elements to 5. Click Accept.

3 Apps

3-38

In the Properties pane, expand dipole-Geometry and change the Tilt(deg) to 30. This changes the
tilt of each dipole element in the array to 30 degrees. Click on Array tab to view the array.

 Antenna Array Designer

3-39

In the Properties pane, expand linear-Geometry and change the Tilt(deg) to 45. This changes the
tilt of the entire array to 45 degrees.

3 Apps

3-40

On the Input pane, change the Center Frequency of the array to 60 MHz. Click 3D Pattern in the
Pattern pane to plot the radiation pattern. Observe the maximum directivity of the array.

 Antenna Array Designer

3-41

Conformal Array Design and Analysis

Open Antenna Array Designer app. In the Array Gallery pane, click Conformal.

The default conformal array consists of a dipole antenna and a bowtie antenna.

3 Apps

3-42

You can view each element separately by clicking on the element in the Layout window.

Meander Antenna with Rectangular Backing

Add a meander dipole antenna with rectangular backing. From the ANTENNA GALLERY, click
Meander to create a meander dipole antenna. Move the antenna by dragging the antenna in the
Layout window.

 Antenna Array Designer

3-43

To add the rectangular backing:

• Choose the meander dipole antenna from the Layout window and then click Rectangular in the
BACKING STRUCTURE GALLERY pane.

or

• Right click on the antenna in the Layout window and select Add Backing > Rectangular
Reflector.

3 Apps

3-44

 Antenna Array Designer

3-45

Delete Meander and Add V-Dipole

To delete the meander dipole antenna, right click from the Layout window, and select Delete.

3 Apps

3-46

Click Vee from the Antenna Gallery to add a V-dipole antenna.

 Antenna Array Designer

3-47

Click Accept.

Antenna Placement

Place the antennas at the following locations in the X-Y-Z plane:

• Element 1 - dipole - [1 0 0]
• Element 2 - bowtie - [0 1 0]
• Element 3 - V-dipole - [0 0 1]

In the Properties pane, expand conformalArray - Geometry and change the values of
ElementPosition(m) to [1 0 0;0 1 0;0 0 1]. Click Apply.

3 Apps

3-48

Embedded Element Pattern and Half-Power Beam Width (HPBW)

Show the embedded element pattern in the azimuth plane for element 2. Choose Embedded
Element in the PATTERN pane. Click AZ Pattern. From the element selection window, click
element 2 and then OK.

 Antenna Array Designer

3-49

To view the HPBW, right click on the azimuth pattern and select Measurements > Antenna
Metrics.

3 Apps

3-50

 Antenna Array Designer

3-51

Coupling Between Elements

To observe the coupling between elements 1 and 3, make sure that the Enable Coupling is selected
in the INPUT pane. In the COUPLING, click Correlation. From the element selection window,
click 1 and 3.

3 Apps

3-52

 Antenna Array Designer

3-53

Optimizing Linear Dipole Antenna Array

Open the Antenna Array Designer app. In the Array Gallery section, select the array type as
Linear.

Select Dipole from Antenna Gallery. Select No Backing under the Backing Structure Gallery.
Specify the design frequency as 2.4 GHz. In Layout pane, specify the Number of Elements as 4 and
click Accept under the Close section.

3 Apps

3-54

Select 3D Pattern under Pattern section to calculate the 3-D radiation pattern.

The gain is 9.1 dBi. Click Optimize on the app toolstrip to optimize this array.

 Antenna Array Designer

3-55

On the Optimizer tab, click Maximize Gain in the Objective Function section. In the Design
Variables pane, select the variables you want to optimize. In this example, select the Element
Spacing variable and set the lower and upper bounds to 0.06 and 0.09.

3 Apps

3-56

Click the Constraints pane. In this example, there are no Constraint Functions. If your application
requires constraints, chose one or more constraint functions from the dropdown.

Click Apply to apply the design variables in this example. In the Settings section, set the number of
iterations to 50, select Parallel Computing if you have Parallel Computing Toolbox™, and click Run.

Once the simulation is complete, the optimization results are displayed in the Results pane

 Antenna Array Designer

3-57

.

Click Accept. In the Pattern section, plot the 3D Pattern again. The gain has now increased to 10.6
dBi.

3 Apps

3-58

Optimizing Linear Dipole Antenna Array Using Surrogate Optimization

Open the Antenna Array Designer app. In the Array Gallery section, select the array type as
Linear.

Select Dipole from Antenna Gallery. Select No Backing under the Backing Structure Gallery.
Specify the design frequency as 2.4 GHz. In Layout pane, specify the Number of Elements as 4 and
click Accept under the Close section.

 Antenna Array Designer

3-59

Select 3D Pattern under Pattern section to calculate the 3-D radiation pattern.

The gain is 9.1 dBi. Click Optimize on the app toolstrip to optimize this array.

3 Apps

3-60

On the Optimizer tab, click Maximize Gain in the Objective Function section. In the Design
Variables pane, select the variables you want to optimize. In this example, select the Element
Spacing variable and set the lower and upper bounds to 0.06 and 0.09.

 Antenna Array Designer

3-61

Click the Constraints pane. In this example, there are no Constraint Functions. If your application
requires constraints, chose one or more constraint functions from the dropdown.

Click Apply to apply the design variables in this example. In the Settings section, from the
Optimizer drop down select Surrogate Opt. Parallel Computing is greyed out.

Once the simulation is complete, the optimization results are displayed in the Results pane.

3 Apps

3-62

Click Accept. In the Pattern section, plot the 3D Pattern again. The gain has now increased to 10.5
dBi.

 Antenna Array Designer

3-63

• “Design and Analysis Using Antenna Array Designer App”
• “Optimization of Antenna Array Elements Using Antenna Array Designer App”

Programmatic Use
antennaArrayDesigner opens the Array Designer app, enabling you to design and analyze
antenna arrays using the Antenna Toolbox library.

See Also
Topics
“Design and Analysis Using Antenna Array Designer App”
“Optimization of Antenna Array Elements Using Antenna Array Designer App”
“Antenna Optimization Algorithm”

Introduced in R2019b

3 Apps

3-64

Array Objects

4

infiniteArray
Create 2-D custom mesh antenna on X-Y plane

Description
The infiniteArray object is an infinite antenna array in the X-Y plane. Infinite array models a
single antenna element called the unit cell. Ground plane of the antennas specifies the boundaries of
the unit cell. Antennas without a ground plane require a reflector. By default, the infinite array has
reflector-backed dipoles as antenna elements. The default dimensions are chosen for an operating
frequency of 1 GHz.

Creation
Description

infa = infiniteArray creates an infinite antenna array in the X-Y plane.

infa = infiniteArray(Name,Value) creates an infinite antenna array with additional properties
specified by one, or more name-value pair arguments. Name is the property name and Value is the

4 Array Objects

4-2

corresponding value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain default values.

Properties
Element — Type of individual antenna elements in unit cell
reflector-backed dipole (default) | object

Type of individual antenna elements in unit cell, specified as an object. Antenna without a
groundplane is backed using a reflector. The ground plane size specifies the unit cell boundaries.
Example: 'Element',reflector

ScanAzimuth — Scan direction in azimuth plane
0 (default) | scalar

Scan direction in azimuth plane, specified as a scalar in degrees.
Example: 'ScanAzimuth',25
Data Types: double

ScanElevation — Scan direction in elevation plane
0 (default) | scalar

Scan direction in elevation plane, specified as a scalar in degrees.
Example: 'ScanElevation',80
Data Types: double

Object Functions
numSummationTerms Change number of summation terms for calculating periodic Green's function
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic

fields of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
layout Display array or PCB stack layout
mesh Mesh properties of metal or dielectric antenna or array structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of

antenna element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

 infiniteArray

4-3

Examples

Infinite Array of Reflector-Backed Dipoles

Create an infinite array with reflector-backed dipoles as unit cells. Scan the array at boresight.
Visualize the unit cell.

infa = infiniteArray('Element',reflector,'ScanAzimuth',0, ...
 'ScanElevation',90);
show(infa)

Scan Impedance of Infinite Array

Calculate the scan impedance of an infinite array at 1GHz. To calculate the impedance, scan the
infinite array from boresight to horizon in the elevation plane.

infa = infiniteArray;
theta0deg = linspace(0,90,5);
zscan = nan(1,numel(theta0deg));
 for j = 1:numel(theta0deg)
 infa.ScanElevation = theta0deg(j);
 zscan(1,j) = impedance(infa,1e9);
 end
 plot(zscan)

4 Array Objects

4-4

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

See Also
circularArray | conformalArray | linearArray | rectangularArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2015b

 infiniteArray

4-5

linearArray
Create linear antenna array

Description
The linearArray class creates a linear antenna array in the X-Y plane. By default, the linear array is
a two-element dipole array. The dipoles are center fed. Each dipole resonates at 70 MHz when
isolated.

Creation

Syntax
array = linearArray
array = linearArray(Name,Value)

Description

array = linearArray creates a linear antenna array in the X-Y plane.

array = linearArray(Name,Value) class to create a linear antenna array, with additional
properties specified by one, or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1,..., NameN, ValueN. Properties not specified retain their default values.

4 Array Objects

4-6

Output Arguments

array — Linear array
linearArray object

Linear array, returned as an linearArray object.

Properties
Element — Individual antenna elements, or array elements in array
dipole (default) | antenna object | array object

Individual antenna elements or array elements, specified as an antenna or array object.
Example: 'Element',monopole

NumElements — Number of antenna elements in array
2 (default) | scalar

Number of antenna elements in array, specified as a scalar.
Example: 'NumElements',4

'ElementSpacing' — Spacing between antenna elements
2 (default) | scalar | vector

Spacing between antenna elements, specified as a scalar or vector in meters. By default, the dipole
elements are spaced 2 m apart.
Example: 'ElementSpacing',3
Data Types: double

AmplitudeTaper — Excitation amplitude of antenna elements
1 (default) | scalar | vector

Excitation amplitude of antenna elements, specified as a scalar or vector. Set the property value to 0
to model dead elements. This value corresponds to the excitation voltages for the elements in the
array.
Example: 'AmplitudeTaper',3
Data Types: double

Phaseshift — Phase shift for antenna elements
0 (default) | scalar | vector

Phase shift for antenna elements, specified as a scalar or vector in degrees. This value corresponds to
the excitation voltages for the elements in the array.
Example: 'PhaseShift',[3 3 0 0]
Data Types: double

Tilt — Tilt angle of array
0 (default) | scalar | vector

 linearArray

4-7

Tilt angle of the array specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90,
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the array at 90 degrees about the
two axes, defined by vectors.
Data Types: double

TiltAxis — Tilt axis of array
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the array, specified as:

• Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the
origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the array rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: array.TiltAxis = 'Z'
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
layout Display array or PCB stack layout
mesh Mesh properties of metal or dielectric antenna or array structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

Examples

4 Array Objects

4-8

Create and Plot Layout of Linear Array

Create a linear array of four dipoles and plot the layout of the array.

la = linearArray;
la.NumElements = 4;
layout(la);

Radiation Pattern of Linear Array

Plot the radiation pattern of a four element linear array of dipoles at a frequency 70MHz.

la = linearArray('NumElements',4);
pattern(la,70e6);

 linearArray

4-9

Linear Array Using Groundplane Antennas

Create a linear array of two monopoles.

m1 = monopole;
m2 = monopole('Height',0.5);
mla = linearArray

mla =
 linearArray with properties:

 Element: [1x1 dipole]
 NumElements: 2
 ElementSpacing: 2
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

mla.Element = [m1,m2];
show(mla);

4 Array Objects

4-10

Rectangular Array of Linear Array

Create an array of discones with element spacing of 3 m.

la = linearArray('Element',discone);
la.ElementSpacing = 3;
show(la)

 linearArray

4-11

Create a rectangular of the linear array.

ra = rectangularArray("Element",la)

ra =
 rectangularArray with properties:

 Element: [1x1 linearArray]
 Size: [2 2]
 RowSpacing: 2
 ColumnSpacing: 2
 Lattice: 'Rectangular'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(ra)

4 Array Objects

4-12

Pattern of Linear Array of Linear Array

Create a linear array and plot the pattern.

la=linearArray('Element',linearArray('ElementSpacing',1));
show(la)

 linearArray

4-13

pattern(la,70e6);

4 Array Objects

4-14

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
circularArray | conformalArray | infiniteArray | rectangularArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 linearArray

4-15

conformalArray
Create conformal antenna array

Description
The conformalArray class creates an antenna array using any element from the antenna or array
library. You can also specify an array of any arbitrary geometry, such as a circular array, a nonplanar
array, an array with nonuniform geometry, or a conformal array of arrays.

Conformal arrays are used in:

• Direction-finding systems that use circular arrays or stacked circular arrays
• Aircraft systems due to surface irregularities or mechanical stress

4 Array Objects

4-16

Creation

Syntax
array = conformalArray
array = conformalArray(Name,Value)

Description

array = conformalArray creates a conformal antenna array using the default antenna element,
shape, and antenna positions.

array = conformalArray(Name,Value) creates a conformal antenna array with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain default values.

Properties
ElementPosition — Position of feed or origin
[0 0 0; 0 0 0.1500] (default) | M-by-3 real matrix

Position of the feed or origin for each antenna element, specified as an M-by-3 real matrix. M is the
number of element positions. By default, M is 2. To specify additional antenna elements, add
additional element positions in the conformal array.
Example: 'ElementPosition',[0.1 0.1 0.1; -0.1 -0.1 -0.1;0.2 0.2]
Data Types: double

Element — Individual antenna or array elements in array
scalar | array of objects | cell array of objects

Individual antenna or array elements in the array, specified as one of the following values:

• A scalar
• An array of objects
• A cell array of objects

By default, a conformal array has two antenna elements, the dipole and the bowtie. To specify
additional antenna or array elements, add additional element positions in the conformal array. You
can add both balanced and unbalanced antennas to the same conformal array.
Example: m = monopole; h = conformalArray('Element', [m,m]). Creates a conformal array
consisting of two monopoles antenna elements.
Example: la = linearArray; ra = rectangularArray; h = conformalArray('Element',
{la,ra}). Creates a conformal array consisting of a linear array and a rectangular array.
Data Types: cell

Reference — Position reference for antenna element
'feed' (default) | 'origin'

 conformalArray

4-17

Position reference for the antenna element, specified as either 'origin' or 'feed'. For more
information, see “Position Reference” on page 4-34.
Example: 'Reference','origin'
Data Types: char | string

AmplitudeTaper — Excitation amplitude of antenna elements
1 (default) | scalar | nonnegative vector

Excitation amplitude of the antenna elements, specified as a scalar or a nonnegative vector. To model
dead elements, set the property value to 0.
Example: 'AmplitudeTaper',3
Example: 'AmplitudeTaper',[3 0]. Creates a two-element conformal array, where 3 and 0 are
the excitations amplitudes of two elements.
Data Types: double

PhaseShift — Phase shift for antenna elements
0 (default) | scalar | real vector

Phase shift for antenna elements, specified as a scalar or a real vector in degrees.
Example: 'PhaseShift',[-45 -45 45 45]
Data Types: double

Tilt — Tilt angle of array
0 (default) | scalar | vector

Tilt angle of the array specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90,
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the array at 90 degrees about the
two axes, defined by vectors.
Data Types: double

TiltAxis — Tilt axis of array
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the array, specified as:

• Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the
origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the array rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]

4 Array Objects

4-18

Example: array.TiltAxis = 'Z'
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
layout Display array or PCB stack layout
mesh Mesh properties of metal or dielectric antenna or array structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

Examples

Default Conformal Array

Create a default conformal array.

c = conformalArray

c =
 conformalArray with properties:

 Element: {[1x1 dipole] [1x1 bowtieTriangular]}
 ElementPosition: [2x3 double]
 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(c)

 conformalArray

4-19

Circular Array of Dipoles

Define the radius and the number of elements for the array.

r = 2;
N = 12;

Create an array of 12 dipoles.

elem = repmat(dipole('Length',1.5),1,N);

Define the x,y,z values for the element positions in the array.

del_th = 360/N;
th = del_th:del_th:360;
x = r.*cosd(th);
y = r.*sind(th);
z = ones(1,N);
pos = [x;y;z];

Create a circular array using the defined dipoles and then visualize it. Display the layout of the array.

c = conformalArray('Element',elem,'ElementPosition',pos');
show(c)

4 Array Objects

4-20

figure
layout(c)

 conformalArray

4-21

Change the width of the fourth and the twelfth element of the circular array. Visualize the new
arrangement.

c.Element(4).Width = 0.05;
c.Element(12).Width = 0.2;
figure
show(c)

4 Array Objects

4-22

Calculate and plot the impedance of the circular array at 100 MHz. The plot shows the impedance of
the first element in the array.

figure
impedance(c,100e6)

 conformalArray

4-23

To view the impedance of all the elements in the array change the value from 1 to 1:12 as shown in
the figure.

4 Array Objects

4-24

Radiation Pattern of Concentric Array of Circular Loop Antennas

Define three circular loop antennas of radii 0.6366 m (default), 0.85 m, and 1 m, respectively.

l1 = loopCircular;
l2 = loopCircular('Radius',0.85);
l3 = loopCircular('Radius',1);

Create a concentric array that uses the origin of circular loop antennas as its position reference.

c = conformalArray('Element',{l1,l2,l3},'ElementPosition',[0 0 0;0 0 0;...
 0 0 0],'Reference','origin');
show(c)

 conformalArray

4-25

Visualize the radiation pattern of the array at 80 MHz.

pattern(c,80e6)

4 Array Objects

4-26

Conformal Array Using Infinite Ground Plane Antenna

Create a dipole antenna to use in the reflector and the conformal array.

d = dipole('Length',0.13,'Width',5e-3,'Tilt',90,'TiltAxis','Y');

Create an infinite groundplane reflector antenna using the dipole as exciter.

rf = reflector('Exciter',d,'Spacing',0.15/2,'GroundPlaneLength',inf);

Create a conformal array using 36 dipole antennas and one infinite groundplane reflector antenna.
View the array.

x = linspace(-0.4,0.4,6);
y = linspace(-0.4,0.4,6);
[X,Y] = meshgrid(x,y);
pos = [X(:) Y(:) 0.15*ones(numel(X),1)];
for i = 1:36
 element{i} = d;
end
element{37} = rf;
lwa = conformalArray('Element',element,'ElementPosition',[pos;0 0 0.15/2]);
show(lwa)

 conformalArray

4-27

Drive only the reflector antenna with an amplitude of 1.

V = zeros(1,37);
V(end) = 1;
lwa.AmplitudeTaper = V;

Compute the radiation pattern of the conformal array.

figure
pattern(lwa,1e9,'Type','efield')

4 Array Objects

4-28

Conformal Array Using Dielectric Antennas

Create two patch microstrip antennas using dielectric substrate FR4. Tilt the second patch microstrip
antenna by 180 degrees.

d = dielectric('FR4');
p1 = patchMicrostrip('Substrate',d);
p2 = patchMicrostrip('Substrate',d,'Tilt',180);

Create and view a conformal array using the two patch microstrip antennas placed 11 cm apart.

c = conformalArray('ElementPosition',[0 0 0;0 0 0.1100],'Element',{p1,p2})

c =
 conformalArray with properties:

 Element: {[1x1 patchMicrostrip] [1x1 patchMicrostrip]}
 ElementPosition: [2x3 double]
 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(c)

 conformalArray

4-29

Conformal Array Using Balanced and Unbalanced Antennas

Create a conformal array using dipole and monopole antennas.

c = conformalArray('Element', {dipole, monopole})

c =
 conformalArray with properties:

 Element: {[1x1 dipole] [1x1 monopole]}
 ElementPosition: [2x3 double]
 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

c.ElementPosition = [0 0 0; 1.5 0 0];

Visualize the array.

figure;
show(c);

4 Array Objects

4-30

Plot the radiation pattern of the array at 70 MHz.

pattern(c, 70e6)

 conformalArray

4-31

Subarrays of Linear Arrays

Create a subarray of linear arrays at different locations.

la = linearArray('ElementSpacing',1)

la =
 linearArray with properties:

 Element: [1x1 dipole]
 NumElements: 2
 ElementSpacing: 1
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

subArr = conformalArray('Element',[la la],'ElementPosition',[1 0 0;-1 1 0])

subArr =
 conformalArray with properties:

 Element: [1x2 linearArray]
 ElementPosition: [2x3 double]

4 Array Objects

4-32

 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(subArr)

Conformal Array of Subarrays and Antennas

Create a linear array of dipoles with and element spacing of 1m.

la = linearArray('ElementSpacing',1);

Create a rectangular array of microstrip patch antennas.

ra = rectangularArray('Element',patchMicrostrip,'RowSpacing',0.1,'ColumnSpacing',0.1);

Create a subarray containing the above linear and rectangular arrays with changes in amplitude
taper and phase shift values.

subArr = conformalArray('Element',{la ra dipole},'ElementPosition',[0 0 1.5;0 0 0;1 1 1],...
 'AmplitudeTaper',[3 0.3 0.03],'PhaseShift',[90 180 120]);
show(subArr)

 conformalArray

4-33

More About
Position Reference

'Reference' property of conformalArray class defines the position reference of an antenna
element in 3–D space. You can position the antenna by specifying the Reference property as feed or
origin.

Choosing feed as the position reference moves the antenna element with so that the new feed
location is at the specified coordinates. The loop rectangle antenna and reflector-backed antenna
show the new position with respect to feed:

4 Array Objects

4-34

Choosing origin as the position reference moves the antenna element so that new antenna origin is
at the specified coordinates. The loop rectangle antenna and reflector-backed antenna show the new
position with respect to origin:

References
[1] Balanis, Constantine A. Antenna Theory: Analysis and Design. 3rd Ed. New York: John Wiley and

Sons, 2005.

See Also
circularArray | infiniteArray | linearArray | rectangularArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2016a

 conformalArray

4-35

rectangularArray
Create rectangular antenna array

Description
The rectangularArray class creates a rectangular antenna array in the X-Y plane. By default, the
rectangular array is a four-element dipole array in a 2 x 2 rectangular lattice. The dipoles are center-
fed. Each dipole resonates at 70 MHz when isolated.

Creation

Syntax
array = rectangularArray
array = rectangularArray(Name,Value)

Description

array = rectangularArray creates a rectangular antenna array in the X-Y plane.

4 Array Objects

4-36

array = rectangularArray(Name,Value) creates a rectangular antenna array, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain default values.

Output Arguments

array — Rectangular array
rectangularArray object

Rectangular array, returned as an rectangularArray object.

Properties
Element — Antenna elements or linear arrays
dipole (default) | antenna object | array object

Antenna elements or linear arrays, specified as an antenna or array object.
Example: 'Element',monopole

Size — Number of antenna elements in row and column of array
[2 2] (default) | two-element vector

Number of antenna elements in row and column of array, specified as a two-element vector.
Example: 'Size',[4 4]

RowSpacing — Row spacing between two antenna elements
2 (default) | scalar | vector

Row spacing between two antenna elements, specified as a scalar or vector in meters. By default, the
antenna elements are spaced 2m apart.
Example: 'RowSpacing',[5 6]
Data Types: double

ColumnSpacing — Column spacing between two antenna elements
2 (default) | scalar | vector

Column spacing between two antenna elements, specified as a scalar or vector in meters. By default,
the antenna elements are spaced 2m apart.
Example: 'ColumnSpacing',[3 4]
Data Types: double

Lattice — Antenna elements spatial arrangement
'Rectangular' (default) | "Triangular"

Antenna elements spatial arrangement, specified as a text input.
Example: 'Lattice',"Triangular"
Data Types: char | string

 rectangularArray

4-37

AmplitudeTaper — Excitation amplitude of antenna elements
1 (default) | scalar | vector

Excitation amplitude of antenna elements, specified as a scalar or vector. Set the property value to 0
to model dead elements.
Example: 'AmplitudeTaper',3
Data Types: double

PhaseShift — Phase shift for antenna elements
0 (default) | scalar | vector

Phase shift for antenna elements, specified as a scalar or vector in degrees.
Example: 'PhaseShift',[3 3 0 0]
Data Types: double

Tilt — Tilt angle of array
0 (default) | scalar | vector

Tilt angle of the array specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90,
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the array at 90 degrees about the
two axes, defined by vectors.
Data Types: double

TiltAxis — Tilt axis of array
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the array, specified as:

• Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the
origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the array rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: array.TiltAxis = 'Z'
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
beamwidth Beamwidth of antenna

4 Array Objects

4-38

charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
layout Display array or PCB stack layout
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

Examples

Create and Plot Layout of Rectangular Array

Create and plot the layout of a rectangular array of four dipoles.

ra = rectangularArray;
ra.Size = [2 2];
layout(ra);

 rectangularArray

4-39

Calculate Scan Impedance of Rectangular Array

Calculate the scan impedance of a 2x2 rectangular array of dipoles at 70 MHz.

h = rectangularArray('Size',[2 2]);
Z = impedance(h,70e6)

Z = 1×4 complex

 26.2533 -57.2114i 26.2519 -57.2124i 26.2533 -57.2114i 26.2519 -57.2124i

Rectangular Array Using Groundplane Antennas

Create a rectangular array of monopoles.

m1 = monopole;
mra = rectangularArray('Element',m1);
show(mra);

4 Array Objects

4-40

Rectangular Array of Linear Array

Create an array of discones with element spacing of 3 m.

la = linearArray('Element',discone);
la.ElementSpacing = 3;
show(la)

 rectangularArray

4-41

Create a rectangular of the linear array.

ra = rectangularArray("Element",la)

ra =
 rectangularArray with properties:

 Element: [1x1 linearArray]
 Size: [2 2]
 RowSpacing: 2
 ColumnSpacing: 2
 Lattice: 'Rectangular'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(ra)

4 Array Objects

4-42

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

See Also
circularArray | conformalArray | infiniteArray | linearArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2015a

 rectangularArray

4-43

circularArray
Create circular antenna array

Description
The circularArray object is a circular antenna array. Circular array finds application in direction of
arrival (DoA) systems. You can use circular arrays to perform 2-D scanning, while lowering element
counts. These arrays also have the ability for 360-degree scanning. The individual elements in the
circular array are part of the same array environment. This property reduces the impact of edge
effects and other coupling variation.

Creation

Syntax
array = circularArray
array = circularArray(Name,Value)

Description

array = circularArray creates a circular antenna array in the X-Y plane.

4 Array Objects

4-44

array = circularArray(Name,Value) class to create a circular antenna array, with additional
properties specified by one, or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1,..., NameN, ValueN. Properties not specified retain their default values.

Properties
Element — Individual antenna type
dipole (default) | vector of objects

Individual antenna type, specified as a vector of objects. This property supports scalar expansion.
Example: 'Element',[monopole,monopole]
Data Types: char | string

NumElements — Number of elements in array
6 (default) | positive scalar integer

Number of elements in the array,specified as a positive scalar integer. The elements in the array are
arranged along the X-axis.
Example: 'NumElements',4
Data Types: double

Radius — Radius of array
1 (default) | positive scalar integer

Radius of array, specified as a positive scalar integer in meters.
Example: 'Radius',0.4
Data Types: double

AngleOffset — Starting angle offset for first element in array
0 (default) | real scalar

Starting angle offset for first element in array, specified as a real scalar in degrees.
Example: 'AngleOffset',8
Data Types: double

AmplitudeTaper — Excitation amplitude for antenna elements in array
1 (default) | real positive vector of size 'Element'

Excitation amplitude for antenna elements in the array, specified as a real positive vector of size
'Element'.
Example: 'AmplitudeTaper',[0 1]
Data Types: double

PhaseShift — Phase shift for each element in array
0 (default) | real vector of size 'Element' in degrees

Phase shift for each element in the array, specified as a real vector of size 'Element' in degrees.

 circularArray

4-45

Example: 'PhaseShift',[0 2]
Data Types: double

Tilt — Tilt angle of array
0 (default) | scalar | vector

Tilt angle of the array specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90,
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the array at 90 degrees about the
two axes, defined by vectors.
Data Types: double

TiltAxis — Tilt axis of array
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the array, specified as:

• Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the
origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the array rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: array.TiltAxis = 'Z'
Data Types: double

Analysis Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
layout Display array or PCB stack layout
show Display antenna or array structure; display shape as filled patch
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
design Design prototype antenna or arrays for resonance at specified frequency
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
optimize Optimize antenna or array using SADEA optimizer
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array

4 Array Objects

4-46

patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

Examples

Plot Elevation Pattern of Circular Antenna Array

Create a circular antenna array using 10 antenna elements. View the layout of the antenna elements
in the array.

ca = circularArray('NumElements',10)

ca =
 circularArray with properties:

 Element: [1x1 dipole]
 NumElements: 10
 Radius: 1
 AngleOffset: 0
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

figure;
layout(ca)

 circularArray

4-47

Display the array.

figure;
show(ca)

4 Array Objects

4-48

Plot the elevation pattern of the circular array at a frequency of 70 MHz.

figure;
patternElevation(ca,70e6)

 circularArray

4-49

See Also
conformalArray | infiniteArray | linearArray | rectangularArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2016b

4 Array Objects

4-50

customArrayMesh
Create 2-D custom mesh antenna array on X-Y plane

Description
The customArrayMesh object creates an array represented by a 2-D custom mesh on the X-Y plane.
You can provide an arbitrary array mesh to the Antenna Toolbox and analyze this mesh as a custom
array for port and field characteristics.

Creation
Description

customarray = customArrayMesh(points,triangles,numfeeds) creates a 2-D array
represented by a custom mesh, based on the specified points and triangles.

Input Arguments

points — Points in custom mesh
2-by-N or 3-by-N matrix of Cartesian coordinates in meters

 customArrayMesh

4-51

Points in custom mesh, specified as a 2-by-N or 3-by-N matrix of Cartesian coordinates in meters. N
is the number of points. In case you specify a 3-by-N integer matrix, the Z-coordinate must be zero
or a constant value. This value sets the 'Points' property in the custom array mesh.
Example: load planarmesh.mat; c = customArrayMesh(p,t,4). Creates a custom array mesh
from the points, p, extracted from the planarmesh.mat file.
Data Types: double

triangles — Triangles in mesh
4-by-M matrix

Triangles in the mesh, specified as a 4-by-M matrix. M is the number of triangles. The first three
rows are indices to the points matrix and represent the vertices of each triangle. The fourth row is a
domain number useful for identifying separate parts of an array. This value sets the 'Triangles'
property in the custom array mesh.
Example: load planarmesh.mat; c = customArrayMesh(p,t,4). Creates a custom array mesh
from the triangles, t, extracted from the planarmesh.mat file.
Data Types: double

numfeeds — Number of feeding points in array
2 (default) | scalar

Number of feeding points in array, specified as a scalar. By default, the number of feed points are 2.
Example: load planarmesh.mat; c = customArrayMesh(p,t,4). Creates a custom array mesh
requiring 4 feed points.
Data Types: double

Properties
Points — Points in custom mesh
2-by-N or 3-by-N matrix of Cartesian coordinates

Points in a custom mesh, specified as a 2-by-N or 3-by-N matrix of Cartesian coordinates in meters.
N is the number of points.
Data Types: double

Triangles — Triangles in mesh
4-by-M matrix

Triangles in the mesh, specified as a 4-by-M matrix. M is the number of triangles.
Data Types: double

NumFeeds — Number of feeding points
scalar

Number of feeding points in the array, specified as a scalar.
Data Types: double

FeedLocation — Feed location of array
cartesian coordinates

4 Array Objects

4-52

Feed locations of array, specified as Cartesian coordinates in meters. Feed location is a read-only
property. To create a feed for the 2–D custom mesh, use the createFeed method.
Data Types: double

AmplitudeTaper — Excitation amplitude of antenna elements
1 (default) | scalar | non-negative vector

Excitation amplitude of antenna elements, specified as a scalar or a non-negative vector. Set the
property value to 0 to model dead elements.
Example: 'AmplitudeTaper',3
Data Types: double

PhaseShift — Phase shift for antenna elements
0 (default) | scalar | real vector

Phase shift for antenna elements, specified as a scalar or a real vector in degrees.
Example: 'PhaseShift',[3 3 0 0]. Creates a custom array mesh of four antennas with phase shifts
specified.
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
createFeed Create feed locations for custom array
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
correlation Correlation coefficient between two antennas in array
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object

Examples

Custom Array Mesh Impedance.

Load a custom mesh and create an array.

load planarmesh.mat;
c = customArrayMesh(p,t,2);

Create feeds for the custom array mesh.

 customArrayMesh

4-53

createFeed(c,[0.07,0.01],[0.05,0.05], [-0.07,0.01],[-0.05,0.05])

Calculate the impedance of the array.

Z = impedance(c,1e9)

Z = 1×2 complex

 64.3919 - 7.8288i 58.9595 -11.3554i

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

See Also
conformalArray | linearArray | rectangularArray

Topics
“Rotate Antennas and Arrays”

Introduced in R2015b

4 Array Objects

4-54

customArrayGeometry
Create array represented by 2-D custom geometry

Description
The customArrayGeometry object is an array represented by a 2-D custom geometry on the X-Y
plane. You can use the customArrayGeometry to import a 2-D custom geometry, define feeds to
create an array element, and analyze the custom array.

Creation
Syntax
array = customArrayGeometry
array = customArrayGeometry(Name,Value)

Description

array = customArrayGeometry creates a custom array represented by 2-D geometry on the X-Y
plane, based on the specified boundary.

array = customArrayGeometry(Name,Value) creates a 2-D array geometry, with additional
properties specified by one or more name-value pair arguments. Name is the property name and
Value is the corresponding value. You can specify several name-value pair arguments in any order as
Name1, Value1, ..., NameN, ValueN. Properties not specified retain their default values.

Output Arguments

array — Custom array geometry
customArrayGeometry object

Custom array geometry, returned as an customArrayGeometry object.

Properties
Boundary — Boundary information in Cartesian coordinates
cell array

Boundary information in Cartesian coordinates, specified as a cell array in meters.
Data Types: double

Operation — Boolean operation performed on boundary list
'P1' (default) | character vector

Boolean operation performed on the boundary list, specified as a character vector. operation set is;
[+, -, *].
Example: 'Operation','P1-P2'

 customArrayGeometry

4-55

Data Types: double

FeedLocation — Array element feed location in Cartesian coordinates
[0 0 0] (default) | three-element vector

Array element feed location in Cartesian coordinates, specified as a three-element vector. The three
elements represent the X, Y, and Z coordinates respectively.
Example: 'FeedLocation', [0 0.2 0]
Data Types: double

FeedWidth — Width of feed for array elements
0.0100 (default) | scalar

Width of feed for array elements, specified as a scalar in meters.
Example: 'FeedWidth',0.05
Data Types: double

AmplitudeTaper — Excitation amplitude for array elements
1 (default) | non-negative scalar | vector of non-negative scalars

Excitation amplitude for array elements, specified as a non-negative scalar or vector of non-negative
scalars. Set property value to 0 to model dead elements.
Example: 'AmplitudeTaper',3
Data Types: double

PhaseShift — Phase shift for array elements
0 (default) | real scalar | real vector

Phase shift for array elements, specified as a real scalar in degrees or a real vector in degrees.
Example: 'PhaseShift',[3 3 0 0] specified the phase shift for custom array containing four
elements.
Data Types: double

Tilt — Tilt angle of array
0 (default) | scalar | vector

Tilt angle of the array specified as a scalar or vector with each element unit in degrees. For more
information, see “Rotate Antennas and Arrays”.
Example: 'Tilt',90,
Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the array at 90 degrees about the
two axes, defined by vectors.
Data Types: double

TiltAxis — Tilt axis of array
[1 0 0] (default) | three-element vector of Cartesian coordinates | two three-element vectors of
Cartesian coordinates | 'X' | 'Y' | 'Z'

Tilt axis of the array, specified as:

4 Array Objects

4-56

• Three-element vectors of Cartesian coordinates in meters. In this case, each vector starts at the
origin and lies along the specified points on the X-, Y-, and Z-axes.

• Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case,
the array rotates around the line joining the two points in space.

• A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see “Rotate Antennas and Arrays”.
Example: 'TiltAxis',[0 1 0]
Example: 'TiltAxis',[0 0 0;0 1 0]
Example: array.TiltAxis = 'Z'
Data Types: double

Object Functions
show Display antenna or array structure; display shape as filled patch
info Display information about antenna or array
axialRatio Axial ratio of antenna
beamwidth Beamwidth of antenna
charge Charge distribution on metal or dielectric antenna or array surface
current Current distribution on metal or dielectric antenna or array surface
EHfields Electric and magnetic fields of antennas; Embedded electric and magnetic fields

of antenna element in arrays
impedance Input impedance of antenna; scan impedance of array
mesh Mesh properties of metal or dielectric antenna or array structure
meshconfig Change mesh mode of antenna structure
pattern Radiation pattern and phase of antenna or array; Embedded pattern of antenna

element in array
patternAzimuth Azimuth pattern of antenna or array
patternElevation Elevation pattern of antenna or array
returnLoss Return loss of antenna; scan return loss of array
sparameters S-parameter object
show Display antenna or array structure; display shape as filled patch
vswr Voltage standing wave ratio of antenna

Examples

Create Custom Slot Antenna Array

Create a custom array using customArrayGeometry. Visualize it and plot the impedance. Also,
visualize the current distribution on the array.

Create a ground plane with a length of 0.6 m and a width of 0.5 m.

Lp = 0.6;
Wp = 0.5;
[~,p1] = em.internal.makeplate(Lp,Wp,2,'linear');

Create slots on the ground plane with a length 0.05 m and a width of 0.4 m.

Ls = 0.05;
Ws = 0.4;

 customArrayGeometry

4-57

offset = 0.12;
[~,p2] = em.internal.makeplate(Ls,Ws,2,'linear');
p3 = em.internal.translateshape(p2, [offset, 0, 0]);
p2 = em.internal.translateshape(p2, [-offset, 0, 0]);

Create a feed in between the slots on the ground plane.

Wf = 0.01;
[~,p4] = em.internal.makeplate(Ls,Wf,2,'linear');
p5 = em.internal.translateshape(p4, [offset, 0, 0]);
p4 = em.internal.translateshape(p4, [-offset, 0, 0]);

Create an array using the slotted ground plane.

carray = customArrayGeometry;
carray.Boundary = {p1', p2', p3', p4', p5'};
carray.Operation= 'P1-P2-P3+P4+P5';
carray.NumFeeds = 2;
carray.FeedWidth= [0.01 0.01];
carray.FeedLocation = [-offset,0,0 ; offset,0,0];

Visualize the array.

figure; show(carray);

Calculate the impedance of the array using the frequency range of 350 MHz to 450 MHz.

figure; impedance(carray, 350e6:5e6:450e6);

4 Array Objects

4-58

Visualize the current distribution of the array at 410 MHz.

figure; current(carray, 410e6);

 customArrayGeometry

4-59

References
[1] Balanis, C. A. Antenna Theory. Analysis and Design. 3rd Ed. Hoboken, NJ: John Wiley & Sons,

2005.

See Also
Topics
“Rotate Antennas and Arrays”

Introduced in R2017a

4 Array Objects

4-60

Methods

5

createFeed
Create feed locations for custom array

Syntax
createFeed(array)
createFeed(array,point1a,point1b,point2a,point2b,.....)

Description

createFeed(array) plots a custom array mesh in a figure window. From the figure window, you
can specify feed locations by clicking on the mesh and create a custom array. To specify a region for
the feed point, select two pairs of points, inside triangles on either side of the air gap.

createFeed(array,point1a,point1b,point2a,point2b,.....) creates the feed across the
triangle edges identified by pairs of points (point1a and point1b, point2a, and point2b). After
creating the feed, feed location is highlighted when you plot the resulting array mesh.

Input Arguments
array — Custom array mesh
scalar handle

5 Methods

5-2

Custom mesh array, specified as a scalar handle.

point1a,point1b — Point pairs to identify feed region
Cartesian coordinates in meters

Point pairs to identify feed region, specified as Cartesian coordinates in meters. Specify the points in
the format [x1, y1], [x2, y2].
Example: createFeed(c,[0.07,0.01],[0.05,0.05],[-0.07,0.01],[-0.05,0.05]). Creates
two pairs of feedpoints for a custom array mesh at the x-y coordinates specified.

Examples
Two–Feed Custom Array Mesh Using GUI

Create a custom array with two feeds.

Load a 2-D custom mesh. Create a custom array using the points and triangles.

load planarmesh.mat;
c = customArrayMesh(p,t,2);

c =
 customArrayMesh with properties:

 Points: [3x658 double]
 Triangles: [4x1219 double]
 NumFeeds: 2
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Use the createFeed function to view the array mesh structure. In this array mesh view, you see
Pick and Undo buttons. The Pick button is highlighted.

createFeed(c)

 createFeed

5-3

Click Pick to display the cross hairs. For an array with two feeds, select two pairs (four points) in the
mesh. To specify a feed-region for the, zoom in and select two points each, one inside each triangle on
either side of the air gap. Select the points using the cross hairs.

• Select the first triangle for feedpoint 1.

5 Methods

5-4

• Select the second triangle on the other side of the air gap for feedpoint 1.

 createFeed

5-5

• Select first triangle for feedpoint 2.

5 Methods

5-6

• Select the second triangle on the other side of the air gap for feedpoint 2.

 createFeed

5-7

Selecting the fourth triangle creates and displays the array feeds.

5 Methods

5-8

You must select the two triangles on either side of the air gap. Otherwise, the function displays an
error message.

 createFeed

5-9

Create Feed for Custom Array Mesh

Load a custom mesh and create an array.

load planarmesh.mat;
c = customArrayMesh(p,t,2);
show(c)

5 Methods

5-10

Create feeds for the custom array mesh.

createFeed(c,[0.07,0.01],[0.05,0.05], [-0.07,0.01],[-0.05,0.05]);
show(c)

 createFeed

5-11

See Also
returnLoss | sparameters

Introduced in R2016a

5 Methods

5-12

impedance
Input impedance of antenna; scan impedance of array

Syntax
impedance(antenna,frequency)
z = impedance(antenna,frequency)

impedance(array,frequency,elementnumber)
z = impedance(array,frequency,elementnumber)

Description
impedance(antenna,frequency) calculates the input impedance of an antenna object and plots
the resistance and reactance over a specified frequency.

z = impedance(antenna,frequency) returns the impedance of the antenna object, over a
specified frequency.

impedance(array,frequency,elementnumber) calculates and plots the scan impedance of a
specified antenna element in an array.

z = impedance(array,frequency,elementnumber) returns the scan impedance of a specified
antenna element in an array.

Examples

Calculate and Plot Impedance of Antenna

Calculate and plot the impedance of a planar dipole antenna over a frequency range of 50MHz -
100MHz.

h = dipole;
impedance (h,50e6:1e6:100e6);

 impedance

5-13

Calculate Scan Impedance of Array

Calculate scan impedance of default linear array over a frequency range of 50MHz to 100MHz.

h = linearArray;
z = impedance(h,50e6:1e6:100e6)

z = 51×2 complex
102 ×

 0.2892 - 1.7385i 0.2892 - 1.7385i
 0.3005 - 1.6573i 0.3005 - 1.6573i
 0.3119 - 1.5778i 0.3119 - 1.5778i
 0.3237 - 1.4999i 0.3237 - 1.4999i
 0.3357 - 1.4233i 0.3357 - 1.4233i
 0.3479 - 1.3481i 0.3479 - 1.3481i
 0.3605 - 1.2740i 0.3605 - 1.2740i
 0.3734 - 1.2009i 0.3734 - 1.2009i
 0.3866 - 1.1287i 0.3866 - 1.1287i
 0.4002 - 1.0573i 0.4002 - 1.0573i
 ⋮

5 Methods

5-14

Input Arguments
antenna — Antenna or array object
scalar handle

Antenna object, specified as a scalar handle.

array — Array object
scalar handle

Array object, specified as a scalar handle.

frequency — Frequency range used to calculate impedance
scalar | vector

Frequency range to calculate impedance, specified as a scalar in hertz or a vector with each element
unit in Hz.
Example: 50e6:1e6:100e6
Data Types: double

elementnumber — Antenna element number in array
scalar

Antenna element number in array, specified as a scalar.
Example: 1
Data Types: double

Output Arguments
z — Input impedance of antenna or scan impedance of array
complex number in ohms

Input impedance of antenna or scan impedance of array, returned as a complex number in ohms. The
real part of the complex number indicates the resistance. The imaginary part of the complex number
indicates the reactance.

Note Antenna Toolbox caches the impedance values while running for the first time so that the
subsequent runs are faster.

See Also
returnLoss

Introduced in R2015a

 impedance

5-15

sparameters
S-parameter object

Syntax
sobj = sparameters(filename)

sobj = sparameters(data,freq)
sobj = sparameters(data,freq, Z0)

sobj = sparameters(netparamobj)
sobj = sparameters(netparamobj, Z0)

sobj = sparameters(rfdataobj)
sobj = sparameters(rfcktobj)

sobj = sparameters(mnobj)
sobj = sparameters(mnobj,freq)
sobj = sparameters(mnobj,freq,Z0)
sobj = sparameters(mnobj,freq,Z0,circuitindices)

sobj = sparameters(antenna,freq,Z0)
sobj = sparameters(array,freq,Z0)

Description
sobj = sparameters(filename) creates an S-parameter object sobj by importing data from the
Touchstone file specified by filename.

sobj = sparameters(data,freq) creates an S-parameter object from the S-parameter data,
data, and frequencies, freq.

sobj = sparameters(data,freq, Z0) creates an S-parameter object from the S-parameter
data, data, and frequencies, freq, with a given reference impedance Z0.

sobj = sparameters(netparamobj) converts the network parameter object, netparamobj, to S-
parameter object with the default reference impedance.

sobj = sparameters(netparamobj, Z0) converts the network parameter object, netparamobj,
to S-parameter object with a given reference impedance, Z0.

sobj = sparameters(rfdataobj) extracts network data from rfdataobj and converts it into S-
parameter object.

sobj = sparameters(rfcktobj) extracts network data from rfcktobj and converts it into S-
parameter object.

sobj = sparameters(mnobj) returns the s-parameters of the best created matching network,
evaluated at a frequency list constructed from source and load impedance.

5 Methods

5-16

sobj = sparameters(mnobj,freq) returns the s-parameters of the best created matching
network at each specified frequency.

sobj = sparameters(mnobj,freq,Z0) returns the s-parameters of the best created matching
network at each specified frequency and characteristic impedance, Z0.

sobj = sparameters(mnobj,freq,Z0,circuitindices) returns an array of S-parameter
objects, one object for each circuit indicated in circuitindices.

sobj = sparameters(antenna,freq,Z0) calculates the complex s-parameters for an antenna
object over specified frequency values and for a given reference impedance, Z0.

sobj = sparameters(array,freq,Z0) calculates the complex s-parameters for an array object
over specified frequency values and for a given reference impedance, Z0.

Examples

Extract and Plot the S-Parameters of File

Extract S-parameters from file default.s2p and plot it.

S = sparameters('default.s2p');
disp(S)

 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [191x1 double]
 Parameters: [2x2x191 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

rfplot(S)

 sparameters

5-17

Calculate the S-Parameters of Circuit Object

Create a resistor element R50 and add it to a circuit object example2 . Calculate the S-parameters of
example2 .

hR1 = resistor(50,'R50');
hckt1 = circuit('example2');
add(hckt1,[1 2],hR1)
setports (hckt1, [1 0],[2 0])
freq = linspace (1e3,2e3,100);
S = sparameters(hckt1,freq,100);
disp(S)

 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [100x1 double]
 Parameters: [2x2x100 double]
 Impedance: 100

 rfparam(obj,i,j) returns S-parameter Sij

5 Methods

5-18

Convert RF Data Object to S-parameters

file = 'default.s2p';
h = read(rfdata.data, file);
S = sparameters(h)

S =
 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [191x1 double]
 Parameters: [2x2x191 double]
 Impedance: 50.0000 + 0.0000i

 rfparam(obj,i,j) returns S-parameter Sij

Calculate S-Parameter Matrix For Antenna

Calculate the complex s-parameters for a default dipole at 70MHz frequency.

 h = dipole

h =
 dipole with properties:

 Length: 2
 Width: 0.1000
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

 sparameters (h, 70e6)

ans =
 sparameters: S-parameters object

 NumPorts: 1
 Frequencies: 70000000
 Parameters: 0.1867 - 0.0080i
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

Calculate S-parameter Matrix For Array

Calculate the complex s-parameters for a default rectangular array at 70MHz frequency.

h = rectangularArray;
sparameters(h,70e6)

 sparameters

5-19

ans =
 sparameters: S-parameters object

 NumPorts: 4
 Frequencies: 70000000
 Parameters: [4x4 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

Calculate the S-Parameters of a Matching Network Circuit

This example shows how to calculate the S-Parameters for a newly created matching network for the
auto-generated circuit #2 with a reference impedance of 100 Ohm.

n = matchingnetwork('LoadImpedance',100,'Components',3);
freq = linspace(n.CenterFrequency-n.Bandwidth/2,n.CenterFrequency+n.Bandwidth/2);
RefZ0 = 100;
ckt_no = 2;
s = sparameters(n,freq,RefZ0,ckt_no)

s =
 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [100x1 double]
 Parameters: [2x2x100 double]
 Impedance: 100

 rfparam(obj,i,j) returns S-parameter Sij

S-parameters of RLCG Transmission Line

Create an RLCG transmission line using the these specifications:

• Resistor : 100 ohms
• Capacitor : 1 pF

rlcglinetxline = txlineRLCGLine('R',100,'C',1e-12)

rlcglinetxline =
 txlineRLCGLine: RLCGLine element

 Name: 'RLCGLine'
 Frequency: 1.0000e+09
 R: 100
 L: 0
 C: 1.0000e-12
 G: 0
 IntpType: 'Linear'

5 Methods

5-20

 LineLength: 0.0100
 Termination: 'NotApplicable'
 StubMode: 'NotAStub'
 NumPorts: 2
 Terminals: {'p1+' 'p2+' 'p1-' 'p2-'}

Calculate the S-parameters of the transmission line at 1 GHz.

sparam = sparameters(rlcglinetxline,1e9);

Input Arguments
data — S-parameter data
array of complex numbers

S-parameter data, specified as an array of complex numbers, of size N-by-N-by-K.

rfobj — RF object
circuit object | rffilter object | transmission line object

RF object, specified as one of the following:

• circuit object
• rffilter object
• txline.coaxial, txline.microstrip, txline.cpw, txline.parallelplate,

txline.rlcgline, txline.twowire objects.

netparamobj — Network parameter object
network parameter object

Network parameter object. The network parameter objects are of the type: sparameters,
yparameters, zparameters, abcdparameters, gparameters, hparameters, and tparameters.
Example: S1 = sparameters(Y1,100) . Y1 is a parameter object. This example converts Y-
parameters to S-parameters at 100 ohms.

filename — Touchstone data file
character vector | string scalar

Touchstone data file, specified as a character vector, that contains network parameter data.
filename can be the name of a file on the MATLAB path or the full path to a file.
Example: sobj = sparameters('defaultbandpass.s2p');

antenna — antenna object
scalar handle

Antenna object, specified as a scalar handle.

array — array object
scalar handle

Array object, specified as a scalar handle.

 sparameters

5-21

freq — S-parameter frequencies
vector of positive real numbers

S-parameter frequencies, specified as a vector of positive real numbers, sorted from smallest to
largest.

Z0 — Reference impedance
50 (default) | positive real scalar

Reference impedance in ohms, specified as a positive real scalar. You cannot specify Z0 if you are
importing data from a file. The argument Z0 is optional and is stored in the Impedance property.

mnobj — Matching network
matchingnetwork object

Matching network, specified as a matchingnetwork object.
Data Types: char | string

circuitindices — Index of matching network
scalar

Index of the matching network circuit, specified as a scalar.
Data Types: double

Output Arguments
sobj — S-parameter data
S-parameter object

S-parameter data, returned as an object. disp(sobj) returns the properties of the object:

• NumPorts — Number of ports, specified as an integer. The function calculates this value
automatically when you create the object.

• Frequencies — S-parameter frequencies, specified as a K-by-1 vector of positive real numbers
sorted from smallest to largest. The function sets this property from the filename or freq input
arguments.

• Parameters — S-parameter data, specified as an N-by-N-by-K array of complex numbers. The
function sets this property from the filename or data input arguments.

• Impedance — Reference impedance in ohms, specified as a positive real scalar. The function sets
this property from the filename or Z0 input arguments. If no reference impedance is provided,
the function uses a default value of 50.

See Also
correlation | impedance | rfparam | rfplot

Introduced in R2012a

5 Methods

5-22

rfparam
Extract vector of network parameters

Syntax
n_ij = rfparam(hnet,i,j)

Description
n_ij = rfparam(hnet,i,j) extracts the network parameter vector (i,j) from the network
parameter object, hnet.

Examples

Create Data Vector From S-Parameter Object

Read in the file default.s2p into an sparameters object and get the S21 value.

S = sparameters('default.s2p');
s21 = rfparam(S,2,1)

s21 = 191×1 complex

 -0.6857 + 1.7827i
 -0.6560 + 1.7980i
 -0.6262 + 1.8131i
 -0.5963 + 1.8278i
 -0.5664 + 1.8422i
 -0.5363 + 1.8563i
 -0.5062 + 1.8700i
 -0.4760 + 1.8835i
 -0.4457 + 1.8966i
 -0.4152 + 1.9094i
 ⋮

Input Arguments
hnet — Network parameters
network parameter object

Network parameters, specified as an RF Toolbox™ network parameter object.

i — Row index
positive integer

Row index of data to extract, specified as a positive integer.

j — Column index
positive integer

 rfparam

5-23

Column index of data to extract, specified as a positive integer.

Output Arguments
n_ij — Network parameters (i, j)
vector

Network parameters (i, j), returned as a vector. The i and j input arguments determine which
parameters the function returns.
Example: S_21 = rfparam(hs,2,1)

See Also
rfinterp1 | rfplot | sparameters

Introduced before R2006a

5 Methods

5-24

rfplot
Plot S-parameter data

Syntax
rfplot(s_obj)
rfplot(s_obj,i,j)
rfplot(___ ,lineSpec)
rfplot(___ ,plotflag)
hline = rfplot(___)
[hline,haxes] = rfplot(filter,frequencies)

Description
rfplot(s_obj) plots the magnitude in dB versus frequency of all S-parameters (S11, S12 ... SNN) on
the current axis. s_obj must be an s-parameter object.

rfplot(s_obj,i,j) plots the magnitude of Si, j, in decibels, versus frequency on the current axis.

rfplot(___ ,lineSpec) plots S-parameters using optional line types, symbols, and colors
specified by linespec.

rfplot(___ ,plotflag) allows to specify the type of plot by using the plotflag.

hline = rfplot(___) plots the S-parameters and returns the column vector of handles to the line
objects, hline.

[hline,haxes] = rfplot(filter,frequencies) plots the magnitude response of the S-
parameters for the rf filter.

Examples

Plot S-Parameter Data Using rfplot

Use sparameters to create a set S-parameters.

hs = sparameters('default.s2p');

Plot all S-parameters.

rfplot(hs)

 rfplot

5-25

Plot S21.

rfplot(hs,2,1)

5 Methods

5-26

Plot the angle of S21 in degrees.

rfplot(hs,2,1,'angle')

 rfplot

5-27

Plot the real part of S21.

rfplot(hs,2,1,'real')

5 Methods

5-28

Input Arguments
s_obj — S-parameters
network parameter object

S-parameters, specified as an RF Toolbox network parameter object. To create this type of object, use
the sparameters function.

i — Row index
positive integer

Row index of data to plot, specified as a positive integer.

j — Column index
positive integer

Column index of data to plot, specified as a positive integer.

lineSpec — Line specification
character array

Line specification, specified as a text input, that modifies the line types, symbols, and colors of the
plot. The function takes text inputs in the same format as plot command. For more information on
line specification values, see linespec.

 rfplot

5-29

Example: '-or'

plotflag — Plot types
'db' (default)

Plot types, specified as the following values: 'db', 'real', 'imag', 'abs', 'angle'.
Example: 'angle'

filter — RF filter
rffilter object

RF filter, specified as an rffilter object.

frequencies — Frequencies to plot magnitude response
vector

Frequencies to plot magnitude response, specified as a vector.

Output Arguments
hline — Line
line handle

Line containing the S-parameter plot, returned as a line handle.

haxes — Axes
axes handle

Axes of the rfplot, returned as an axes handle.

See Also
setrfplot | sparameters

Introduced before R2006a

5 Methods

5-30

show
Display antenna or array structure; display shape as filled patch

Syntax
show(object)

show(shape)

Description
show(object) displays the structure of an antenna or array object.

show(shape) displays shape as filled region using patches.

Examples

Display Antenna Structure

This example shows how to create a vivaldi antenna and display the antenna structure.

h = vivaldi

h =
 vivaldi with properties:

 TaperLength: 0.2430
 ApertureWidth: 0.1050
 OpeningRate: 25
 SlotLineWidth: 5.0000e-04
 CavityDiameter: 0.0240
 CavityToTaperSpacing: 0.0230
 GroundPlaneLength: 0.3000
 GroundPlaneWidth: 0.1250
 FeedOffset: -0.1045
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(h)

 show

5-31

Show Circle Shape

Create a circular shape and visualize the filled regions.

c = antenna.Circle;
show(c);

5 Methods

5-32

Input Arguments
object — Antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.

shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle. You can create the shapes using antenna.Circle, antenna.Polygon, or
antenna.Rectangle.
Example: c = antenna.Rectangle; show(c)

See Also
layout | mesh | plot

Introduced in R2015a

 show

5-33

returnLoss
Return loss of antenna; scan return loss of array

Syntax
returnLoss(antenna,frequency)
returnLoss(antenna,frequency,z0)
rl = returnLoss(antenna,frequency,z0)

returnLoss(array,frequency,z0,elementnumber)
rl = returnLoss(array,frequency,z0,elementnumber)

Description
returnLoss(antenna,frequency) calculates and plots the return loss of an antenna, over a
specified frequency and at a reference impedance of 50 ohm.

returnLoss(antenna,frequency,z0) calculates and plots the return loss of an antenna, over a
specified frequency and a given reference impedance, z0.

rl = returnLoss(antenna,frequency,z0) returns the return loss of an antenna.

returnLoss(array,frequency,z0,elementnumber) calculates and plots the scan return loss of
a specified antenna element in an array.

rl = returnLoss(array,frequency,z0,elementnumber) returns the scan return loss of a
specified antenna element in an array.

Examples

Calculate and Plot Return Loss of Antenna

This example shows how to calculate and plot the return loss of a circular loop antenna over a
frequency range of 50MHz-100MHz.

h = loopCircular;
returnLoss (h, 50e6:1e6:100e6);

5 Methods

5-34

Input Arguments
antenna — Antenna object
scalar handle

Antenna object, specified as a scalar handle.

array — array object
scalar handle

Array object, specified as a scalar handle.

frequency — Frequency range used to calculate return loss
vector in Hz

Frequency range used to calculate return loss, specified as a vector in Hz.
Example: 50e6:1e6:100e6
Data Types: double

z0 — Reference impedance
50 (default) | scalar in ohms

Reference impedance, specified as a scalar in ohms.

 returnLoss

5-35

Example: 40
Data Types: double

elementnumber — Antenna element number in array
scalar

Antenna element number in array, specified as a scalar.
Example: 1
Data Types: double

Output Arguments
rl — Return loss of antenna object or scan return loss of array object
vector in dB

Return loss of antenna object or scan return loss of array object, returned as a vector in dB. The
return loss is calculated using the formula

RL = 20log10
(Z − Z0)
(Z + Z0)

where,

• Z = input impedance of antenna or scan impedance of array
• Z0 = reference impedance

See Also
EHfields | impedance | sparameters

Introduced in R2015a

5 Methods

5-36

pattern
Radiation pattern and phase of antenna or array; Embedded pattern of antenna element in array

Syntax
pattern(object,frequency)
pattern(object,frequency,azimuth,elevation)
pattern(___ ,Name,Value)

[pat,azimuth,elevation] = pattern(object,frequency,azimuth,elevation)
[pat,azimuth,elevation] = pattern(___ ,Name,Value)

Description
pattern(object,frequency) plots the 3-D radiation pattern of the antenna or array object over a
specified frequency. By default, in Antenna Toolbox, the far-field radius is set to 100λ.

pattern(object,frequency,azimuth,elevation) plots the radiation pattern of the antenna or
array object using the specified azimuth and elevation angles.

pattern(___ ,Name,Value) uses additional options specified by one or more Name, Value pair
arguments. You can use any of the input arguments from previous syntaxes.

Use the 'ElementNumber' and 'Termination' property to calculate the embedded pattern of the
antenna element in an array connected to a voltage source. The voltage source model consists of an
ideal voltage source of 1 volt in series with a source impedance. The embedded pattern includes the
effect of mutual coupling due to the other antenna elements in the array.

[pat,azimuth,elevation] = pattern(object,frequency,azimuth,elevation) returns
the pattern value, pat, value of an antenna or array object at specified frequency. azimuth and
elevation are the angles at which the pattern function calculates the directivity.

[pat,azimuth,elevation] = pattern(___ ,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

Examples

Calculate Radiation Pattern of Array

Calculate radiation pattern of default linear array for a frequency of 70 MHZ.

l = linearArray;
pattern(l,70e6)

 pattern

5-37

Radiation Pattern of Helix in X-Z Plane

h = helix;
pattern (h, 2e9, 0, 1:1:360);

5 Methods

5-38

Embedded Element Pattern of Linear Array

Calculate the embedded element pattern of a linear array. Excite the first antenna element in the
array. Terminate all the other antenna elements using a 50-ohm resistance.

l = linearArray;
pattern(l, 70e6,'ElementNumber', 1,'Termination', 50);

 pattern

5-39

Directivity Value of Helix Antenna.

Calculate the directivity of a helix antenna.

h = helix;
D = pattern(h, 2e9, 0, 1:1:360);

Showing the first five directivity values.

Dnew = D(1:5)

Dnew = 5×1

 -6.2750
 -6.0599
 -5.8322
 -5.5935
 -5.3455

Radiation Pattern of Helix Antenna

Plot the radiation pattern of a helix antenna with transparency specified as 0.5.

5 Methods

5-40

p = PatternPlotOptions

p =
 PatternPlotOptions with properties:

 Transparency: 1
 SizeRatio: 0.9000
 MagnitudeScale: []
 AntennaOffset: [0 0 0]

p.Transparency = 0.5;
ant = helix;
pattern(ant,2e9,'patternOptions',p)

To understand the effect of Transparency, chose Overlay Antenna in the radiation pattern plot.

This option overlays the helix antenna on the radiation pattern.

 pattern

5-41

Radiation Pattern of Dipole Antenna

Plot radiation pattern of dipole antenna in rectangular cartesian co-ordinate system.

pattern(dipole, 70e6:10e6:100e6, 0, 90, 'CoordinateSystem', 'rectangular')

5 Methods

5-42

Directivity values of dipole antenna

D = pattern(dipole, 70e6:10e6:100e6, 0, 90, 'CoordinateSystem', 'rectangular')

D = 4×1

 -49.5916
 -50.9111
 -51.5650
 -51.3791

Input Arguments
object — Antenna or array element
object

Antenna or array element, specified as an object.

frequency — Frequency to calculate or plot antenna or array radiation pattern
scalar | vector

Frequency to calculate or plot the antenna or array radiation pattern, specified as a scalar or a vector
with each element in Hz. The vector frequencies support rectangular coordinate system.
Example: 70e6

 pattern

5-43

Data Types: double

azimuth — Azimuth angles and spacing between angles
–180:5:180 (default) | vector

Azimuth angles and spacing between the angles to visualize the radiation pattern, specified as a
vector in degrees. If the coordinate system is set to uv, then the U values are specified in this
parameter. The values of U are between -1 to 1.
Example: 90
Data Types: double

elevation — Elevation angles and spacing between angles
–90:5:90 (default) | vector

Elevation angles and spacing between the angles to visualize the radiation pattern, specified as a
vector in degrees. If the coordinate system is set to uv, then the V values are specified in this
parameter. The values of V are between -1 to 1.
Example: 0:1:360
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'CoordinateSystem', 'uv'

CoordinateSystem — Coordinate system to visualize radiation pattern
'polar' (default) | 'rectangular' | 'uv'

Coordinate system to visualize the radiation pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of these values: 'polar', 'rectangular', 'uv'.
Example: 'CoordinateSystem', 'polar'
Data Types: char

Type — Quantity to plot
'directivity' | 'gain' | 'efield' | 'power' | 'powerdb' | phase

Quantity to plot, specified as a comma-separated pair consisting of 'Type' and one of these values:

• directivity – Directivity in dBi (lossless antenna or array)
• gain – Gain in dBi (lossy antenna or array)
• efield – Electric field in volt/meter
• power – Power in watts
• powerdb – Power in dB
• phase – Phase in degrees.

Note Type can only be set to phase when Polarization is provided.

5 Methods

5-44

The default value is 'directivity' for a lossless antenna and 'gain' for a lossy antenna. You
cannot plot the 'directivity' of a lossy antenna.
Example: 'Type', 'efield'
Data Types: char

Normalize — Normalize field pattern
true (default) | false | boolean

Normalize field pattern, specified as the comma-separated pair consisting of 'Normalize' and
either true or false.
Example: 'Normalize', false
Data Types: logical

PlotStyle — 2-D pattern display style when frequency is vector
'overlay' (default) | 'waterfall'

2-D pattern display style when frequency is a vector, specified as the comma-separated pair
consisting of 'PlotStyle' and one of these values:

• 'overlay' – Overlay frequency data in a 2-D line plot
• 'waterfall' – Plot frequency data in a waterfall plot

You can use this property when using pattern function with no output arguments.
Example: 'PlotStyle', 'waterfall'
Data Types: char

Polarization — Field polarization
'H' | 'V' | 'RHCP' | 'LHCP'

Field polarization, specified as the comma-separated pair consisting of 'Polarization' and one of
these values:

• 'H' – Horizontal polarization
• 'V' – Vertical polarization
• 'RHCP' – Right-hand circular polarization
• 'LHCP' – Left-hand circular polarization

By default, you can visualize a combined polarization.
Example: 'Polarization', 'RHCP'
Data Types: char

ElementNumber — Antenna element in array
scalar

Antenna element in array, specified as the comma-separated pair consisting of 'ElementNumber'
and scalar. This antenna element is connected to the voltage source.

Note Use this property to calculate the embedded pattern of an array.

 pattern

5-45

Example: 'ElementNumber',1
Data Types: double

Termination — Impedance value for array element termination
50 (default) | scalar

Impedance value for array element termination, specified as the comma-separated pair consisting of
'Termination' and scalar. The impedance value terminates other antenna elements of an array
while calculating the embedded pattern of the antenna connected to the voltage source.

Note Use this property to calculate the embedded pattern of an array.

Example: 'Termination',40
Data Types: double

patternOptions — Parameter to change pattern plot properties
PatternPlotOptions object (default) | scalar

Parameter to change pattern plot properties, specified as the comma-separated pair consisting of
'patternOptions' and a PatternPlotOptions output. The properties that you can vary are:

• Transparency
• SizeRatio
• AntennaOffset
• AntennaVisibility
• MagnitudeScale

Example: p = PatternPlotOptions('Transparency',0.1); Create a pattern plot option with a
transparency of 0.1. ant = helix;pattern(ant,2e9,'patternOptions',p); Use this pattern
plot option to visualize the pattern of a helix antenna.
Data Types: double

Output Arguments
pat — Radiation pattern of antenna or array or embedded pattern of array
matrix

Radiation pattern of antenna or array or embedded pattern of array, returned as a matrix of number f
elevation values by number of azimuth values. The pattern is one of the following:

• directivity – Directivity in dBi (lossless antenna or array)
• gain – Gain in dBi (lossy antenna or array)
• efield – Electric field in volt/meter
• power – Power in watts
• powerdb – Power in dB

Matrix size is number of elevation values multiplied by number of azimuth values.

5 Methods

5-46

azimuth — Azimuth angles of calculated radiation pattern
vector in degrees

Azimuth angles to calculate the radiation pattern, returned as a vector in degrees.

elevation — Elevation angles of calculate radiation pattern
vector in degrees

Elevation angles to calculate the radiation pattern, returned as a vector in degrees.

More About
Directivity

Directivity is the ability of an antenna to radiate power in a particular direction. It can be defined as
ratio of maximum radiation intensity in the desired direction to the average radiation intensity in all
other directions. The equation for directivity is:

D = 4πU(θ, ϕ)
Prad

where:

• D is the directivity of the antenna
• U is the radiation intensity of the antenna
• Prad is the average radiated power of antenna in all other directions

Antenna directivity is dimensionless and is calculated in decibels compared to the isotropic radiator
(dBi).

Gain

The gain of an antenna depends on the directivity and efficiency of the antenna. It can be defined as
the ratio of maximum radiation intensity in the desired direction to the total power input of the
antenna. The equation for gain of an antenna is:

G = 4πU(θ, ϕ)
Pin

where:

• G is the gain of the antenna
• U is the radiation intensity of the antenna
• Pin is the total power input to the antenna

If the efficiency of the antenna in the desired direction is 100%, then the total power input to the
antenna is equal to the total power radiated by the antenna, that is, Pin = Prad. In this case, the
antenna directivity is equal to the antenna gain.

Array Factor and Pattern Multiplication

The basis of the array theory is the pattern multiplication theorem. This theorem states that the
combined pattern of N identical array elements is expressed as the element pattern times the array
factor.

 pattern

5-47

The array factor is calculated using the formula:

AF = ∑
i = 0

N
V(i) · e(ksinθcosφ · x(i) + ksinφ · y(i) + kcosθ · z(i))

where:

• N is the number of elements in the array.
• V is the applied voltage (amplitude and phase) at each element in the array.
• k is the wave number.
• theta and phi are the elevation and azimuth angles.
• x, y, and z are the Cartesian coordinates of the feed locations for every antenna element of the

array.

Once the array factor is calculated using the above equation, you can calculate the beam pattern of
the array as the product of the array factor and the beam pattern of the individual antenna element of
the array.

Array pattern = AF* individual antenna element pattern

References
[1] Makarov, Sergey N. Antenna and Em Modeling in MATLAB. Chapter3, Sec 3.4 3.8. Wiley Inter-

Science.

[2] Balanis, C.A. Antenna Theory, Analysis and Design, Chapter 2, sec 2.3-2.6, Wiley.

See Also
EHfields | PatternPlotOptions | current | patternFromSlices

Topics
“Radiation Pattern”

Introduced in R2015a

5 Methods

5-48

patternAzimuth
Azimuth pattern of antenna or array

Syntax
patternAzimuth(object,frequency,elevation)
patternAzimuth(object,frequency,elevation,Name,Value)

directivity = patternAzimuth(object,frequency,elevation)
directivity = patternAzimuth(object,frequency,elevation,'Azimuth')

Description
patternAzimuth(object,frequency,elevation) plots the 2-D radiation pattern of the antenna
or array object over a specified frequency. Elevation values defaults to zero if not specified.

patternAzimuth(object,frequency,elevation,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

directivity = patternAzimuth(object,frequency,elevation) returns the directivity of
the antenna or array object over a specified frequency. Elevation values defaults to zero if not
specified.

directivity = patternAzimuth(object,frequency,elevation,'Azimuth') uses
additional options specified by one or more Name,Value pair arguments.

Examples

Azimuth Radiation Pattern of Helix Antenna

Calculate and plot the azimuth radiation pattern of the helix antenna at 2 GHz.

h = helix;
patternAzimuth(h,2e9);

 patternAzimuth

5-49

Azimuth Radiation Pattern of Dipole Antenna

Calculate and plot the azimuth radiation pattern of the dipole antenna at 70 MHz at elevation values
of 0 and 45.

 d = dipole;
 patternAzimuth(d,70e6,[0 45],'Azimuth',-140:5:140);

5 Methods

5-50

Input Arguments
object — antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.

frequency — Frequency used to calculate charge distribution
scalar in Hz

Frequency used to calculate charge distribution, specified as a scalar in Hz.
Example: 70e6
Data Types: double

elevation — Elevation angle values
vector in degrees

Elevation angle values, specified as a vector in degrees.
Example: [0 45]
Data Types: double

'Azimuth' — Azimuth angles of antenna
–180:1:180 (default) | vector in degrees

 patternAzimuth

5-51

Azimuth angles of antenna, specified as the comma-separated pair consisting of 'Azimuth' and a
vector in degrees.
Example: 'Azimuth',2:2:340
Data Types: double

Output Arguments
directivity — Antenna or array directivity
matrix in dBi

Antenna or array directivity, returned as a matrix in dBi. The matrix size is the product of number of
elevation values and number of azimuth values.

See Also
pattern | patternElevation | polarpattern

Introduced in R2015a

5 Methods

5-52

patternMultiply
Radiation pattern of array using pattern multiplication

Syntax
patternMultiply(array,frequency)
patternMultiply(array,frequency,azimuth)
patternMultiply(array,frequency,azimuth, elevation)
patternMultiply(___ ,Name,Value)

[fieldval,azimuth,elevation] = patternMultiply(array,frequency)
[fieldval,azimuth,elevation] = patternMultiply(array,frequency,azimuth)
[fieldval,azimuth,elevation] = patternMultiply(array,frequency,azimuth,
elevation)
[fieldval,azimuth,elevation] = patternMultiply(___ ,Name,Value)

Description
patternMultiply(array,frequency) plots the 3-D radiation pattern of the array object over a
specified frequency. patternMultiply calculates the full array pattern without taking the effect of
mutual coupling between the different array elements.

patternMultiply(array,frequency,azimuth) plots the radiation pattern of the array object for
the given azimuth angles. Elevation angles retain default values.

patternMultiply(array,frequency,azimuth, elevation) plots the radiation pattern of the
array object for the given azimuth and elevation angles.

patternMultiply(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. Specify name-value pair arguments after all other input arguments.

[fieldval,azimuth,elevation] = patternMultiply(array,frequency) returns the field
value such as the directivity of the lossless array in dBi or gain of the lossy array in dBi at the
specified frequency. The size of the field value matrix is number of elevation values x number of
azimuth values.

[fieldval,azimuth,elevation] = patternMultiply(array,frequency,azimuth) returns
the field value at the specified azimuth angles. Elevation angles retain default values.

[fieldval,azimuth,elevation] = patternMultiply(array,frequency,azimuth,
elevation) returns the field value at the specified azimuth angles, and elevation angles.

[fieldval,azimuth,elevation] = patternMultiply(___ ,Name,Value) returns the field
value using additional options specified by one or more Name,Value pair arguments. Specify name-
value pair arguments after all other input arguments.

Examples

 patternMultiply

5-53

Radiation Pattern of Rectangular Array

Plot the radiation pattern of a default rectangular array at 70 MHz. Pattern multiplication does not
take into consideration the effect of mutual coupling in array elements.

h = rectangularArray;
patternMultiply(h,70e6);

Radiation Pattern of Linear Array in Rectangular Coordinates

Plot the radiation pattern of a 10-element linear array at 70 MHz. Visualize the pattern using the
rectangular coordinate system.

l = linearArray('NumElements',10);
patternMultiply(l,70e6,'CoordinateSystem','rectangular');

5 Methods

5-54

Input Arguments
array — Input antenna array
object handle

Array object, specified as an object handle.
Example: r = rectangularArray; patternMultiply(r,70e6). Plot the pattern of a
rectangular array.

frequency — Frequency used to calculate array pattern
scalar in Hz

Frequency used to calculate array pattern, specified as a scalar in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angle of antenna
–180:5:180 (default) | vector in degrees

Azimuth angle of the antenna, specified as a vector in degrees.
Example: –90:5:90
Data Types: double

 patternMultiply

5-55

elevation — Elevation angle of antenna
–90:5:90 (default) | vector in degrees

Elevation angle of the antenna, specified as a vector in degrees.
Example: 0:1:360
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'CoordinateSystem', rectangular

CoordinateSystem — Coordinate system of radiation pattern
'polar' (default) | 'rectangular' | 'uv'

Coordinate system of radiation pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of these values: 'polar', 'rectangular', 'uv'.
Example: 'CoordinateSystem', 'polar'
Data Types: char

Type — Value to plot
'directivity' (default) | 'gain' | 'efield' | 'power' | 'powerdb'

Value to plot, specified as a comma-separated pair consisting of 'Type' and one of these values:

• 'directivity' – Radiation intensity in a given direction of antenna in dB
• 'gain' – Radiation intensity in a given direction of antenna, when the antenna has a lossy

substrate in dB
• 'efield' – Electric field of antenna in volt/meter
• 'power' – Antenna power in watts
• 'powerdb' – Antenna power in dB

Example: 'Type', 'efield'
Data Types: char

Normalize — Normalize field pattern
true (default) | false | boolean

Normalize field pattern, specified as the comma-separated pair consisting of 'Normalize' and
either true or false. For directivity patterns, this property is not applicable.
Example: 'Normalize', false
Data Types: double

Polarization — Field polarization
'combined' (default) | 'H' | 'V' | 'RHCP' | 'LHCP'

Field polarization, specified as the comma-separated pair consisting of 'Polarization' and one of
these values:

5 Methods

5-56

• 'combined'
• 'H' – Horizontal polarization
• 'V' – Vertical polarization
• 'RHCP' – Right-hand circular polarization
• 'LHCP' – Left-hand circular polarization

By default, you can visualize a combined polarization.
Example: 'Polarization', 'RHCP'
Data Types: char

Output Arguments
fieldval — Array directivity or gain
matrix in dBi

Array directivity or gain, returned as a matrix in dBi. The matrix size is the product of the number of
elevation values and azimuth values.

azimuth — Azimuth angles
vector in degrees

Azimuth angle used to calculate field values, returned as a vector in degrees.

elevation — Elevation angles
vector in degrees

Elevation angles used to calculate field values, returned as a vector in degrees.

See Also
pattern | patternElevation

Topics
“Antenna Toolbox Coordinate System”

Introduced in R2017a

 patternMultiply

5-57

patternElevation
Elevation pattern of antenna or array

Syntax
patternElevation(object,frequency,azimuth)
patternElevation(object,frequency,azimuth,Name,Value)

directivity = patternElevation(object,frequency,azimuth)
directivity = patternElevation(object,frequency,azimuth,'Elevation')

Description
patternElevation(object,frequency,azimuth) plots the 2-D radiation pattern of the antenna
or array object over a specified frequency. Azimuth values defaults to zero if not specified.

patternElevation(object,frequency,azimuth,Name,Value) uses additional options
specified by one or more Name, Value pair arguments.

directivity = patternElevation(object,frequency,azimuth) returns the directivity of
the antenna or array object at specified frequency. Azimuth values defaults to zero if not specified.

directivity = patternElevation(object,frequency,azimuth,'Elevation') uses
additional options specified by one or more Name, Value pair arguments.

Examples

Elevation Radiation Pattern of Helix

Calculate and plot the elevation pattern of the helix antenna at 2 GHz.

h = helix;
patternElevation (h, 2e9);

5 Methods

5-58

Elevation Radiation Pattern of Dipole Antenna

Calculate and plot the elevation radiation pattern of the dipole antenna at 70 MHz at elevation values
of 0 and 45.

 d = dipole;
 patternElevation(d,70e6,[0 45],'Elevation',-140:5:140);

 patternElevation

5-59

Input Arguments
object — Antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.

frequency — Frequency used to calculate charge distribution
scalar in Hz

Frequency used to calculate charge distribution, specified as a scalar in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angle values
vector in degrees

Azimuth angle values, specified as a vector in degrees.
Example: [0 45]
Data Types: double

'Elevation' — Elevation angles of antenna
–90:1:90 (default) | vector in degrees

5 Methods

5-60

Elevation angles of antenna, specified the comma-separated pair consisting of 'Elevation' and a
vector in degrees.
Example: 'Elevation', 0:1:360
Data Types: double

Output Arguments
directivity — Antenna or array directivity
matrix in dBi

Antenna or array directivity, returned as a matrix in dBi. The matrix size is the product of number of
elevation values and number of azimuth values.

See Also
pattern | patternAzimuth | polarpattern

Introduced in R2015a

 patternElevation

5-61

current
Current distribution on metal or dielectric antenna or array surface

Syntax
current(object,frequency)

i = current(object,frequency)
[i,p] = current(object,frequency)

current(object,frequency,'dielectric')
i = current(object,frequency,'dielectric')
i = current(___ ,Name,Value)

Description
current(object,frequency) calculates and plots the absolute value of the current on the surface
of an antenna or array object, at a specified frequency.

i = current(object,frequency) returns the x, y, z components of the current on the surface of
an antenna or array object, at a specified frequency.

[i,p] = current(object,frequency) returns the x, y, z components of the current on the
surface of an antenna or array object, at a specified frequency and at the point in which the current
calculation is performed.

current(object,frequency,'dielectric') calculates and plots the absolute value of current
at a specified frequency value on the dielectric face of the antenna or array.

i = current(object,frequency,'dielectric') returns the x, y, z components of the current
on the dielectric surface of an antenna or array object, at a specified frequency.

i = current(___ ,Name,Value) calculates the current on the surface of an antenna using
additional name-value pairs.

Examples

Calculate and Plot Current Distribution on Antenna Surface

Calculate and plot the current distribution for a circular loop antenna at 70MHz frequency.

 h = loopCircular;
 current(h,70e6);

5 Methods

5-62

Calculate Current Distribution of Array

Calculate the current distribution of a default rectangular array at 70MHz frequency.

h = rectangularArray;
i = current(h,70e6)

i = 3×160 complex

 0.0000 + 0.0000i
 0.0009 + 0.0020i 0.0013 + 0.0025i -0.0002 - 0.0012i 0.0003 + 0.0013i 0.0004 + 0.0015i -0.0005 - 0.0015i -0.0014 - 0.0025i -0.0009 - 0.0020i 0.0015 + 0.0027i -0.0015 - 0.0027i 0.0030 + 0.0051i -0.0020 - 0.0034i 0.0017 + 0.0030i -0.0017 - 0.0030i -0.0000 - 0.0041i 0.0000 + 0.0021i -0.0007 - 0.0017i 0.0007 + 0.0017i 0.0011 + 0.0023i -0.0011 - 0.0023i 0.0007 + 0.0017i -0.0007 - 0.0018i 0.0005 + 0.0015i -0.0005 - 0.0015i 0.0011 + 0.0022i 0.0003 + 0.0013i -0.0009 - 0.0020i 0.0009 + 0.0020i -0.0015 - 0.0027i 0.0016 + 0.0028i -0.0002 - 0.0012i -0.0011 - 0.0023i -0.0016 - 0.0030i 0.0017 + 0.0029i 0.0001 + 0.0021i -0.0000 - 0.0041i 0.0030 + 0.0051i -0.0013 - 0.0025i -0.0020 - 0.0035i 0.0013 + 0.0025i 0.0009 + 0.0020i 0.0013 + 0.0025i -0.0002 - 0.0012i 0.0003 + 0.0013i 0.0005 + 0.0015i -0.0005 - 0.0015i -0.0013 - 0.0025i -0.0009 - 0.0020i 0.0015 + 0.0027i -0.0015 - 0.0027i
 0.0562 + 0.1041i 0.0428 + 0.0763i 0.0659 + 0.1334i 0.0649 + 0.1280i 0.0641 + 0.1250i 0.0621 + 0.1188i 0.0373 + 0.0658i 0.0523 + 0.0956i 0.0343 + 0.0603i 0.0280 + 0.0487i 0.0031 + 0.0054i 0.0137 + 0.0235i 0.0176 + 0.0302i 0.0246 + 0.0427i 0.0662 + 0.1423i 0.0661 + 0.1358i 0.0580 + 0.1081i 0.0609 + 0.1154i 0.0453 + 0.0813i 0.0501 + 0.0911i 0.0608 + 0.1154i 0.0579 + 0.1079i 0.0621 + 0.1188i 0.0641 + 0.1251i 0.0502 + 0.0910i 0.0649 + 0.1281i 0.0523 + 0.0955i 0.0562 + 0.1040i 0.0344 + 0.0603i 0.0280 + 0.0487i 0.0659 + 0.1334i 0.0455 + 0.0816i 0.0247 + 0.0427i 0.0177 + 0.0303i 0.0661 + 0.1358i 0.0662 + 0.1422i 0.0032 + 0.0054i 0.0373 + 0.0658i 0.0138 + 0.0236i 0.0429 + 0.0765i 0.0562 + 0.1041i 0.0428 + 0.0763i 0.0659 + 0.1334i 0.0649 + 0.1280i 0.0641 + 0.1250i 0.0621 + 0.1188i 0.0373 + 0.0658i 0.0523 + 0.0956i 0.0343 + 0.0602i 0.0280 + 0.0487i

Current Distribution On Microstrip Patch Antenna

Create a microstrip patch antenna using 'FR4' as the dielectric substrate.

d = dielectric('FR4');
pm = patchMicrostrip('Length',75e-3, 'Width',37e-3, ...
 'GroundPlaneLength',120e-3, 'GroundPlaneWidth',120e-3, ...
 'Substrate',d)

 current

5-63

pm =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0370
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1200
 GroundPlaneWidth: 0.1200
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(pm)

Plot the current distribution on the antenna at a frequency of 1.67 GHz.

figure
current(pm,1.67e9,'dielectric')

5 Methods

5-64

Logarithmic Current Distribution on Antenna Surface

Create a default pifa (planar inverted F antenna).

ant = pifa;

Visualize the current distribution on the pifa antenna in using log function scale.

current(ant,1.75e9,'scale','log')

 current

5-65

Input Arguments
object — Antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.

frequency — Frequency used to calculate current distribution
scalar in Hz

Frequency to calculate current distribution, specified as a scalar in Hz.
Example: 70e6
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'scale','log10'

scale — Scale to visualize current distribution
string (default) | function handle

5 Methods

5-66

Scale to visualize the current distribution on the surface of the antenna, specified as a string or a
function handle. The string values are: 'linear', 'log', 'log10'. By default, the value is
'linear'. The function handle can be of any mathematical function such as log, log10, cos, or
sin.
Data Types: char | function_handle

Output Arguments
i — x, y, z components of current distribution
3-by-n complex matrix in A/m

x, y, z components of current distribution, returned as a 3-by-n complex matrix in A/m. The value of
the current is calculated on every triangle mesh or every dielectric tetrahedron face on the surface of
an antenna or array.

p — Cartesian coordinates representing center of each triangle in mesh
3-by-n real matrix

Cartesian coordinates representing the center of each triangle in the mesh, returned as a 3-by-n real
matrix.

See Also
axialRatio | charge

Introduced in R2015a

 current

5-67

charge
Charge distribution on metal or dielectric antenna or array surface

Syntax
charge(object,frequency)

c = charge(object,frequency)
[c,p] = charge(object,frequency)

charge(object,frequency,'dielectric')
c = charge(object,frequency,'dielectric')
c = charge(___ ,Name,Value)

Description
charge(object,frequency) calculates and plots the absolute value of the charge on the surface
of an antenna or array object surface at a specified frequency.

c = charge(object,frequency) returns a vector of charges in C/m on the surface of an antenna
or array object, at a specified frequency.

[c,p] = charge(object,frequency) returns a vector of charges in C/m on the surface of an
antenna or array object, at a specified frequency and at the point at which the charge calculation was
performed.

charge(object,frequency,'dielectric') calculates and plots the absolute value of charge at
a specified frequency value on the dielectric face of the antenna or array.

c = charge(object,frequency,'dielectric') returns the x, y, z components of the charge on
the dielectric surface of an antenna or array object, at a specified frequency.

c = charge(___ ,Name,Value) calculates the charge on the surface of an antenna using
additional name-value pairs.

Examples

Calculate and Plot Charge Distribution on Antenna Surface

Calculate and plot the charge distribution on a bowtieTriangular antenna at 70MHz frequency.

h = bowtieTriangular;
charge (h, 70e6);

5 Methods

5-68

Calculate Charge Distribution of Array

Calculate charge distribution of linear array at 70 MHz frequency.

h = linearArray;
h.NumElements = 4;
C = charge(h,70e6);

Charge Distribution On Microstrip Patch Antenna

Create a microstrip patch antenna using 'FR4' as the dielectric substrate.

d = dielectric('FR4');
pm = patchMicrostrip('Length',75e-3, 'Width',37e-3, ...
 'GroundPlaneLength',120e-3, 'GroundPlaneWidth',120e-3, ...
 'Substrate',d)

pm =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0370

 charge

5-69

 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1200
 GroundPlaneWidth: 0.1200
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(pm)

Plot the charge distribution on the antenna at a frequency of 1.67 GHz.

figure
charge(pm,1.67e9,'dielectric')

5 Methods

5-70

Logarithmic Charge Distribution on Antenna Surface

Create a default pifa (planar inverted F antenna).

ant = pifa;

Visualize the charge distribution on the pifa antenna in log10 scale.

charge(ant,1.75e9,'scale','log10')

 charge

5-71

Input Arguments
object — Antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.

frequency — Frequency used to calculate charge distribution
scalar in Hz

Frequency used to calculate charge distribution, specified as a scalar in Hz.
Example: 70e6
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'scale','log10'

scale — Scale to visualize charge distribution
string (default) | function handle

5 Methods

5-72

Scale to visualize the charge distribution on the surface of the antenna, specified as a string or a
function handle. The string values are: 'linear', 'log', 'log10'. By default, the value is
'linear'. The function handle can be of any mathematical function such as log, log10, cos, or
sin.
Data Types: char | function_handle

Output Arguments
c — Complex charges
1-by-n vector in C/m

Complex charges, returned as a 1-by-n vector in C/m. This value is calculated on every triangle mesh
or every dielectric tetrahedron face on the surface of an antenna or array.

p — Cartesian coordinates representing center of each triangle in mesh
3-by-n real matrix

Cartesian coordinates representing the center of each triangle in the mesh, returned as a 3-by-n real
matrix.

See Also
EHfields | current

Introduced in R2015a

 charge

5-73

design
Design prototype antenna or arrays for resonance at specified frequency

Syntax
hant = design(antenna,frequency)

harray = design(array,frequency)
harray = design(array,frequency,elements)

harray = design(conformalarray,frequency)
harray = design(conformalarray,frequency,elements)

harray = design(infinitearray,frequency)
harray = design(infinitearray,frequency,elements)

Description
hant = design(antenna,frequency) designs any antenna object from the antenna library to
resonate at the specified frequency.

harray = design(array,frequency) designs an array of dipoles for operation at a specified
frequency. The elements are separated by half-wavelength.

harray = design(array,frequency,elements) designs an array of elements for operation at a
specified frequency. The elements are separated by half-wavelength, if possible. If you cannot
achieve half-wavelength spacing, the element size is used to calculate inter-element separation and
the elements are evenly distributed on a sphere radius proportional to the largest element in
element.

harray = design(conformalarray,frequency) designs a conformal array of dipole and bowtie
elements at the specified frequency. The elements are placed in the locations specified by default
conformalArray object. If the required element positions cannot be achieved due to intersection of
elements, the element size is used to compute the inter element spacing and the elements are evenly
distributed on a sphere of radius proportional to the largest element in the property Elements.

harray = design(conformalarray,frequency,elements) designs a conformal array of
specified elements at the specified frequency.

harray = design(infinitearray,frequency) designs an infinite array with a reflector element
at the specified frequency.

harray = design(infinitearray,frequency,elements) designs an infinite array of specified
elements at the specified frequency.

Examples

5 Methods

5-74

Prototype Antenna Design

Design a prototype microstrip patch antenna that resonates at a frequency of 1 GHz.

p = design(patchMicrostrip,1e9)

p =
 patchMicrostrip with properties:

 Length: 0.1439
 Width: 0.1874
 Height: 0.0030
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.2998
 GroundPlaneWidth: 0.2998
 PatchCenterOffset: [0 0]
 FeedOffset: [0.0303 0]
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(p)

Calculate the impedance of the above antenna at the same frequency.

Z = impedance(p,1e9)

Z = 55.8475 - 0.8183i

 design

5-75

Rectangular Array of Reflector Backed Rounded Bowtie Antennas

Design a rectangular array of reflector backed rounded bowtie antennas to operate at 500 MHz.

b = bowtieRounded('Tilt',90,'TiltAxis',[0 1 0]);
r = reflector('Exciter',b);
ra = design(rectangularArray,500e6,r);
show(ra)

Plot the radiation pattern of the rectangular array at 500 MHz.

pattern(ra,500e6)

5 Methods

5-76

Design Conformal Array of Four Elements

Create a default conformal array.

confarraydef = conformalArray

confarraydef =
 conformalArray with properties:

 Element: {[1x1 dipole] [1x1 bowtieTriangular]}
 ElementPosition: [2x3 double]
 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Design a conformal array using a dipole antenna, folded dipole antenna, meander dipole antenna, and
a monopole antenna at 1 GHz.

desC = design(confarraydef,1e9,{dipole, dipoleFolded, dipoleMeander, monopole})

desC =
 conformalArray with properties:

 design

5-77

 Element: {1x4 cell}
 ElementPosition: [4x3 double]
 Reference: 'feed'
 AmplitudeTaper: 1
 PhaseShift: 0
 Tilt: 0
 TiltAxis: [1 0 0]

desC.ElementPosition

ans = 4×3

 0 0 -1.3016
 0 0 -2.6939
 0 0 -2.8594
 0 0 -3.1498

show(desC)

Design Infinite Array Using Specified Frequency and Antenna

Create an infinite array.

5 Methods

5-78

infarrayV1 = infiniteArray

infarrayV1 =
 infiniteArray with properties:

 Element: [1x1 reflector]
 ScanAzimuth: 0
 ScanElevation: 90

show(infarrayV1)

Design the above array using a monopole antenna and at 1 GHz frequency.

infarrayV2 = design(infarrayV1,1e9,monopole)

infarrayV2 =
 infiniteArray with properties:

 Element: [1x1 monopole]
 ScanAzimuth: 0
 ScanElevation: 90

show(infarrayV2)

 design

5-79

Input Arguments
antenna — Antenna object
scalar handle

Antenna object from antenna library, specified as a scalar handle.
Example: dipole

array — Array object
linearArray | rectangularArray | circularArray

Array object from antenna library, specified as a linearArray, rectangularArray, or
circularArray object.
Example: r = reflector;ra = design(rectangularArray,500e6,r); Designs a rectangular
array of reflectors operating at a frequency of 500 MHz.

conformalarray — Conformal array object
conformalArray

Conformal array object, specified as a conformalArray object.

You can position elements in a conformal array in three ways:

5 Methods

5-80

• Case 1: Points lie on a line.
• Case 2: Points lie on a plane.
• Case 3: Points lie in 3-D space.

Example: c = conformalArray;ca = design(c,50e6,{dipole,dipoleFolded, dipoleJ,
bowtieTriangular,dipole,dipole,dipole,dipole,dipole}); Designs a conformal array of
specified elements operating at a frequency of 50 MHz.

infinitearray — Infinite array object
scalar handle

Infinite array object, specified as a infiniteArray object.
Example: i = infiniteArray;ia = design(i,1e9,monopole); Designs an infinite array with
a monopole antenna element operating at a frequency of 1 GHz.

frequency — Resonant frequency of antenna
real positive scalar

Resonant frequency of the antenna, specified as a real positive scalar.
Example: 55e6
Data Types: double

elements — Antenna object in array
single antenna element | cell array

Antenna object from the antenna library used in the array, specified as a single antenna element or a
cell array in conformal array. For more information on element positions for conformal array, see
conformalarray.
Example: r = reflector;ra = design(rectangularArray,500e6,r); Designs a rectangular
array of reflectors operating at a frequency of 500 MHz.
Example: c = conformalArray;ca = design(c,50e6,{dipole,dipoleFolded, dipoleJ,
bowtieTriangular,dipole,dipole,dipole,dipole,dipole}); Designs a conformal array of
specified elements operating at a frequency of 50 MHz.

Output Arguments
hant — Antenna object operating at specified reference frequency
antenna object

Antenna object operating at the specified reference frequency, returned as an antenna object.

harray — Array object operating at specified reference frequency and specified elements
array object

Array object operating at the specified reference frequency and specified elements, returned as an
array object.

See Also
show

 design

5-81

Introduced in R2016b

5 Methods

5-82

createFeed
Create feed location for custom antenna

Syntax
createFeed(antenna)
createFeed(antenna,point1,point2)

Description

createFeed(antenna) plots a custom antenna mesh in a figure window. From the figure window,
you can specify a feed location for the mesh and create a custom antenna. To specify a region for the
feed point, select two points, inside triangles on either side of the air gap or inside triangles that
share a common edge.

createFeed(antenna,point1,point2) creates the feed across the triangle edges identified by
point1 and point2. After the feed is created, when you plot the resulting antenna mesh the feed
location is highlighted.

Input Arguments
antenna — Custom antenna mesh
scalar handle

Custom mesh antenna, specified as a scalar handle.

 createFeed

5-83

point1,point2 — Points to identify feed region
Cartesian coordinates in meters

Points to identify feed region, specified as Cartesian coordinates in meters. Specify the points in the
format [x1, y1], [x2, y2].
Example: createFeed(c,[0.07,0.01],[0.05,0.05]);

Examples
Create Feed for Custom Mesh Antenna Using Air Gap between Triangles

Load a 2-D custom mesh. Create a custom antenna using the points and triangles.

load planarmesh.mat
c = customAntennaMesh(p,t)

c =

 customAntennaMesh with properties:

 Points: [3x658 double]
 Triangles: [4x1219 double]
 FeedLocation: []
 Tilt: 0
 TiltAxis: [1 0 0]

Use the createFeed function to view the antenna mesh structure. In this antenna mesh view, you
see Pick and Undo buttons. The Pick button is highlighted.

createFeed(c)

5 Methods

5-84

Click Pick to display the cross-hairs. To specify a region for the feed point, zoom in and select two
points, one inside each triangle on either side of the air gap. Select the points using the cross-hairs.

 createFeed

5-85

5 Methods

5-86

Selecting the second triangle creates and displays the antenna feed.

 createFeed

5-87

Create Feed for Custom Mesh Antenna Using Triangles Sharing Edge

Load a 2-D custom mesh. Create a custom antenna using the points and triangles.

load planarmesh.mat
c = customAntennaMesh(p,t)

c =

 customAntennaMesh with properties:

 Points: [3x658 double]
 Triangles: [4x1219 double]
 FeedLocation: []
 Tilt: 0
 TiltAxis: [1 0 0]

Use the createFeed function to view the antenna mesh structure. In this antenna mesh view, you
see Pick and Undo buttons. The Pick button is highlighted.

createFeed(c)

5 Methods

5-88

Click Pick to display the cross-hairs. To specify a region for the feed point, zoom in and select two
points, one inside each triangle sharing an edge. Select the points using the cross-hairs.

 createFeed

5-89

5 Methods

5-90

Selecting the second triangle creates and displays the antenna feed.

 createFeed

5-91

Create Feed for Custom Antenna Mesh

Load a 2-D custom mesh using the planarmesh.mat. Create a custom antenna using the points and
triangles.

load planarmesh.mat
c = customAntennaMesh(p,t)

c =
 customAntennaMesh with properties:

 Points: [3x658 double]
 Triangles: [4x1219 double]
 FeedLocation: []
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show (c)

5 Methods

5-92

Create the feed for the custom antenna across the points (0.07,0.01) and (0.05,0.05) meters
respectively.

createFeed(c,[0.07,0.01],[0.05,0.05])
show(c)

 createFeed

5-93

See Also
returnLoss | sparameters

Introduced in R2015b

5 Methods

5-94

EHfields
Electric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element
in arrays

Syntax
[e,h] = EHfields(object,frequency)
EHfields(object,frequency)

[e,h] = EHfields(object,frequency,points)
EHfields(object, frequency, points)

EHfields(___ ,Name,Value)

Description
[e,h] = EHfields(object,frequency) calculates the x, y, and z components of electric field
and magnetic field of an antenna or array object at a specified frequency.

EHfields(object,frequency) plots the electric and magnetic field vectors at specified frequency
values and at specified points in space.

[e,h] = EHfields(object,frequency,points) calculates the x, y, and z components of
electric field and magnetic field of an antenna or array object. These fields are calculated at specified
points in space and at a specified frequency.

EHfields(object, frequency, points) plots the electric and magnetic field vectors at
specified frequency values and at specified points in space.

EHfields(___ ,Name,Value) plots the electric and magnetic field vectors with additional options
specified by one or more Name Value pair arguments using any of the preceding syntaxes.

Use the 'ElementNumber' and 'Termination' property to calculate the embedded electric and
magnetic fields of the antenna element in an array connected to a voltage source. The voltage source
model consists of an ideal voltage source of 1 volt in series with a source impedance. The embedded
pattern includes the effect of mutual coupling due to the other antenna elements in the array.

Examples

Plot E and H Fields of Antenna

Plot electric and magnetic fields of a default Archimedean spiral antenna.

h = spiralArchimedean;
EHfields(h,4e9)

 EHfields

5-95

Calculate EH Fields of Antenna

Calculate electric and magnetic fields at a point 1m along the z-axis from an Archimedean spiral
antenna.

h = spiralArchimedean;
[e,h] = EHfields(h,4e9,[0;0;1])

e = 3×1 complex

 0.4137 + 0.2557i
 0.3040 - 0.4084i
 0.0000 + 0.0000i

h = 3×1 complex

 -0.0008 + 0.0011i
 0.0011 + 0.0007i
 -0.0000 - 0.0000i

5 Methods

5-96

Plot Electric and Magnetic Field Vector of Antenna

Create an Archimedean spiral antenna. Plot electric and magnetic field vector at the z = 1cm plane
from the antenna.

h = spiralArchimedean;

Define points on a rectangular grid in the X-Y plane.

[X,Y] = meshgrid(-.05:.01:.05,-.05:.01:.05);

Add a z-offset of 0.01.

p = [X(:)';Y(:)';.01*ones(1,prod(size(X)))];

Plot electric and magnetic field vector at the z = 1cm plane. from the antenna

EHfields (h,4e9,p)

Embedded Vector Fields of Linear Array

Plot the embedded vector fields of a linear array when the first element is excited and all the other
antenna elements are terminated using 50-ohm resistance.

l = linearArray;
EHfields(l, 70e6, 'ElementNumber', 1, 'Termination', 50);

 EHfields

5-97

Calculate the Electric and Magnetic Fields at Multiple Frequencies at Single Point in Space

Calculate electric and magnetic fields of a dipole antenna.

[E H] = EHfields(dipole, 70e6:2e6:80e6, [0 0 0]')

E = 3×6 complex

 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
 -1.5560 - 1.9646i -1.8728 - 1.6784i -2.0195 - 1.3802i -2.0605 - 1.1295i -2.0476 - 0.9344i -2.0103 - 0.7857i

H = 3×6 complex
10-3 ×

 -0.5993 + 0.0845i -0.5167 + 0.1856i -0.4283 + 0.2355i -0.3530 + 0.2530i -0.2938 + 0.2537i -0.2484 + 0.2465i
 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

5 Methods

5-98

Input Arguments
object — Antenna or array object
scalar handle

Antenna or array object, specified as a scalar handle.
Example: h = spiralArchimedean
Data Types: function_handle

frequency — Frequency used to calculate electric and magnetic fields
scalar | vector in Hz

Frequency used to calculate electric and magnetic fields, specified as a scalar in Hz.
Example: 70e6
Data Types: double

points — Cartesian coordinates of points in space
3-by-p complex matrix

Cartesian coordinates of points in space, specified as a 3-by-p complex matrix. p is the number of
points at which to calculate the E-H field.
Example: [0;0;1]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value the corresponding value. Name must appear inside single quotes (''). You can specify several
name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ScaleFields',[2 0.5] specifies scalar values of the electric and magnetic fields

ScaleFields — Value by which to scale electric and magnetic fields
two-element vector

Value by which to scale the electric and magnetic fields, specified as the comma-separated pair
consisting of 'ScaleFields' and a two-element vector. The first element scales the E field and the
second element scales the H-field. A value of 2 doubles the relative length of either field. A value of
0.5 to halves the length of either field. A value of 0 plots either field without automatic scaling.
Example: 'ScaleFields',[2 0.5]
Data Types: double

ViewField — Field to display
'E' | 'H'

Field to display, specified as the comma-separated pair consisting of 'ViewField' and a text input.
'E' displays the electric field and 'H' displays the magnetic field.
Example: 'ViewField', 'E'
Data Types: char

 EHfields

5-99

ElementNumber — Antenna element in array
scalar

Antenna element in array, specified as the comma-separated pair consisting of 'ElementNumber'
and scalar This antenna element is connected to the voltage source.

Note Use this property to calculate the embedded pattern of an array.

Example: 'ElementNumber',1
Data Types: double

Termination — Impedance value for array element termination
50 (default) | scalar

Impedance value for array element termination, specified as the comma-separated pair consisting of
'Termination' and scalar. The impedance value terminates other antenna elements of an array
while calculating the embedded pattern of the antenna connected to the voltage source.

Note Use this property to calculate the embedded pattern of an array.

Example: 'Termination',40
Data Types: double

Output Arguments
e — x, y, z components of electrical field
3-by-p complex matrix in V/m

x, y, z components of electrical field, returned as 3-by-p complex matrix in V/m. The dimension p is
the number of points in space at which the electric and magnetic fields are computed.

h — x, y, z components of magnetic field
3-by-p complex matrix in A/m

x, y, z components of magnetic field, returned as a 3-by-p complex matrix in H/m. The dimension p is
the number of points in space at which the electric and magnetic fields are computed.

See Also
axialRatio | beamwidth

Introduced in R2015a

5 Methods

5-100

axialRatio
Axial ratio of antenna

Syntax
axialRatio(antenna,frequency,azimuth,elevation)
ar = axialRatio(antenna,frequency,azimuth,elevation)

Description
axialRatio(antenna,frequency,azimuth,elevation) plots axial ratio of an antenna over a
specified frequency, and in the direction specified by azimuth and elevation. Any one among
frequency, azimuth, or elevation values must be scalar. If only one of the values are scalar, the plot is
3-D. If two values are scalar, the plot is 2-D.

ar = axialRatio(antenna,frequency,azimuth,elevation) returns the axial ratio of an
antenna, over the specified frequency, and in the direction specified by azimuth and elevation.

Examples

Calculate Axial Ratio of Antenna

Calculate the axial ratio of an equiangular spiral antenna at azimuth=0 and elevation=0.

s = spiralEquiangular;
ar = axialRatio(s,3e9,0,0)

ar = Inf

Axial Ratio of Cloverleaf Antenna

Create a cloverleaf antenna.

cl = cloverleaf;
show(cl);

 axialRatio

5-101

Plot the axial ratio of the antenna from 5 GHz to 6 GHz.

freq = linspace(5e9,6e9,101);
axialRatio(cl,freq,0,0);

5 Methods

5-102

The axial ratio plot shows that the antenna supports circular polarization over the entire frequency
range.

Input Arguments
antenna — Antenna element
object

Antenna object, specified as an object.

frequency — Frequency used to calculate axial ratio
scalar | vector

Frequency used to calculate axial ratio, specified as a scalar or vector with each element in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angle of antenna
scalar | vector

Azimuth angle of antenna, specified as a scalar or vector with each element in degrees.
Example: 0
Data Types: double

 axialRatio

5-103

elevation — Elevation angle of antenna
scalar | vector

Elevation angle of antenna, specified as a scalar or vector with each element in degrees.
Example: 0
Data Types: double

Output Arguments
ar — Axial ratio of antenna
scalar in dB

Axial ratio of antenna, returned as a scalar in dB.

See Also
beamwidth | pattern

Introduced in R2015a

5 Methods

5-104

beamwidth
Beamwidth of antenna

Syntax
beamwidth(antenna,frequency,azimuth,elevation)
bw = beamwidth(antenna,frequency,azimuth,elevation,dBdown)

[bw,angles] = beamwidth(____)

Description
beamwidth(antenna,frequency,azimuth,elevation) plots the beamwidth of the input
antenna at a specified frequency. The beamwidth is the angular separation at which the magnitude of
the directivity pattern decreases by a certain value from the peak of the main beam. The directivity
decreases in the direction specified by azimuth and elevation angles of the antenna.

Note

• beamwidth plots only one beamwidth for symmetrical patterns.
• beamwidth might not interpret the data well for partial angle data.

bw = beamwidth(antenna,frequency,azimuth,elevation,dBdown) returns the beamwidth
of the antenna at a specified dBdown value from the peak of the radiation pattern main beam.

[bw,angles] = beamwidth(____) returns the beamwidth and angles (points in a plane) using any
input arguments from previous syntaxes.

Examples

Plot Beamwidth of Dipole Antenna

Plot the beamwidth for a dipole antenna at azimuth=0 and elevation=1:1:360 (x-z plane)

d = dipole;
beamwidth(d,70e6,0,1:1:360);

 beamwidth

5-105

Calculate Beamwidth and Angles of Antenna

Calculate the beamwidth of a helix antenna and the angles of the beamwidth. The antenna has an
azimuth angle of 1:1:360 degrees, an elevation angle of 0 degrees on the X-Y plane, and a dB down
value of 5 dB.

hx = helix;
[bw,angles] = beamwidth(hx,2e9,1:1:360,0,5)

bw = 145

angles = 1×2

 143 288

Plot Beamwidth of Antenna with Symetric Patterns

Create a fractalGasket antenna object.

fg = fractalGasket("NumIterations",4,"TiltAxis",[0 1 0],'Tilt',90);

Calculate beamwidth and angle of a fractalGasket.

5 Methods

5-106

[bw,ang] = beamwidth(fg,1.3e9,0,0:1:360) % bw is a 2-by-1 vector.

bw = 2×1

 24.0000
 24.0000

ang = 2×2

 348 12
 168 192

Plot beamwidth.

beamwidth(fg,1.3e9,0,0:1:360)

Plot Second Beamwidth Solution

Get the polarpattern handle.

P = polarpattern('gco');

Hide the beamwidth span and remove the cursor C1 and C2. All the cursors can also be removed
using the function removeCursors.

 beamwidth

5-107

showSpan(P,0);
removeCursors(P,1);
removeCursors(P,2);

Add the cursors at other side of the plot and second beamwidth solution is displayed.

addCursor(P,ang(2,:));
showSpan(P,1);

Input Arguments
antenna — Antenna object
scalar handle

Antenna object, specified as a scalar handle.

frequency — Frequency used to calculate beamwidth
scalar in Hz

Frequency to calculate beamwidth, specified as a scalar in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angle of antenna
scalar in degrees | vector in degrees

5 Methods

5-108

Azimuth angle of the antenna, specified as a scalar or vector in degrees. If the elevation angle is
specified as a vector, then the azimuth angle must be a scalar.
Example: 3
Data Types: double

elevation — Elevation angle of antenna
scalar in degrees | vector in degrees

Elevation angle of the antenna, specified as a scalar or vector in degrees. If the azimuth angle is
specified as a vector, then the elevation angle must be a scalar.
Example: 1:1:360
Data Types: double

dBdown — Power point from peak of main beam of antenna
3 (default) | scalar in dB

Power point from peak of main beam of antenna, specified as a scalar in dB.
Example: 5
Data Types: double

Output Arguments
bw — Beamwidth of antenna
scalar | 2-by-1 vector

Beamwidth of antenna, returned as a scalar in degrees or a 2-by-1 vector with each element unit in
degrees.

angles — Points on plane
vector in degrees

Points on plane used to measure beamwidth, returned as a vector with each element unit in degrees.

See Also
axialRatio | pattern

Introduced in R2015a

 beamwidth

5-109

mesh
Mesh properties of metal or dielectric antenna or array structure

Syntax
mesh(object)
mesh(shape)
mesh(object,Name,Value)
meshdata = mesh(___ ,Name,Value)

Description
mesh(object) plots the mesh used to analyze antenna or array element.

mesh(shape) plots the mesh for the shapes.

mesh(object,Name,Value) changes and plots the mesh structure of an antenna or array element,
using additional options specified by the name-value pairs. You can also determine the number of
unknowns from the number of basis functions in the output.

meshdata = mesh(___ ,Name,Value) returns a mesh structure that specifies the properties used
to analyze the antenna or array.

Examples

View Mesh Structure of Antenna

Create and view the mesh structure of a top hat monopole antenna with Maximum edge length of 0.1
m.

h = monopoleTopHat;
i = impedance(h,75e6)

i = 2.5322e+02 + 6.0784e+02i

mesh(h)

5 Methods

5-110

m = mesh(h)

m = struct with fields:
 NumTriangles: 152
 NumTetrahedra: 0
 NumBasis: 207
 MaxEdgeLength: 0.4295
 MeshMode: 'auto'

Mesh Microstrip Patch Metal-Dielectric Antenna

Radiation Pattern of Microstrip Patch Antenna

Create a microstrip patch antenna using 'FR4' as the dielectric substrate.

d = dielectric('FR4');
pm = patchMicrostrip('Length',75e-3, 'Width',37e-3, ...
 'GroundPlaneLength',120e-3, 'GroundPlaneWidth',120e-3, ...
 'Substrate',d);
show(pm)

 mesh

5-111

Plot the radiation pattern of the antenna at a frequency of 1.67 GHz.

figure
pattern(pm,1.67e9)

5 Methods

5-112

Mesh the whole antenna.

figure
mesh(pm)

 mesh

5-113

Mesh only the dielectric surface of the antenna.

figure
mesh(pm,'View','dielectric surface')

5 Methods

5-114

Mesh Arbitrary Shape

Create a rectangular and circular shape, intersect them and mesh at a wavelength of 2 m.

r = antenna.Rectangle;
c = antenna.Circle;
p = r&c;
mesh(p,2);

 mesh

5-115

Input Arguments
object — Antenna or array element
object

Antenna or array element, specified as an object.

shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle. You can create the shapes using antenna.Circle, antenna.Polygon, or
antenna.Rectangle.
Example: c = antenna.Rectangle; mesh(c)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: ‘MaxEdgeLength’, 0.1

MaxEdgeLength — Maximum edge length of triangles in mesh
scalar

5 Methods

5-116

Maximum edge length of triangles in mesh, specified as a comma-separated pair consisting of
'MaxEdgeLength' and a scalar. All triangles in the mesh have sides less than or equal to the
'MaxEdgeLength' value.
Data Types: double

MinEdgeLength — Minimum edge length of triangles in mesh
scalar

Minimum edge length of triangles in mesh, specified as a comma-separated pair consisting of
'MinEdgeLength' and a scalar. All triangles in the mesh have sides less than or equal to the
'MinEdgeLength'.

Note You can use this property only with the pcbStack object.

Data Types: double

GrowthRate — Mesh growth rate
0.7 (default) | scalar

Mesh growth rate, specified as a comma-separated pair consisting of 'GrowthRate' and a scalar.
The default value of 0.7 states that the growth rate of the mesh is 70 percent. Growth rate values lie
between 0 and 1.

Note You can use this property only with the pcbStack object.

Data Types: double

View — Customize mesh view of antenna or array element
'all' (default) | 'metal' | 'dielectric surface' | 'dielectric volume'

Customize mesh view of antenna or array element, specified as a comma-separated pair consisting of
'View' and 'all', 'metal','dielectric surface', or 'dielectric volume'.

You choose 'dielectric surface' to view the boundary triangle mesh of the dielectric. You
choose 'dielectric volume' to view the tetrahedral volume mesh of the dielectric.
Data Types: char

See Also
meshconfig | plot | show

Introduced in R2015a

 mesh

5-117

layout
Display array or PCB stack layout

Syntax
layout(array)
layout(pcbstack)

Description
layout(array) displays the layout of the array object. The circles in the layout corresponds to
antenna feed points within the array.

layout(pcbstack) displays the layout of the PCB stack object. The circles in the layout
corresponds to antenna feed points on the PCB.

Examples

Display Array Layout on X-Y Plane

Create and view a 3x3 rectangular array layout on the X-Y plane.

h = rectangularArray('Size',[3 3]);
layout(h)

5 Methods

5-118

Display PCB Stack Layout

Default PCB stack layout.

p = pcbStack;
layout(p)

 layout

5-119

Input Arguments
array — Array object
scalar handle

Array object, specified as a scalar handle.

pcbstack — PCB stack
pcbStack object

PCB stack, specified as a pcbStack object.

See Also
pcbStack | show

Introduced in R2015a

5 Methods

5-120

lumpedElement
Lumped element circuit to load antenna

Syntax
le = lumpedElement
le = lumpedElement(Name,Value)

Description
le = lumpedElement creates a lumped element circuit. The default value is an empty
lumpedElement object.

When you load an antenna using a lumped resistor, capacitor, or inductor, the electrical properties of
the antennas changes. These lumped elements are typically added to the antenna feed. You can use
lumped elements to increase the bandwidth of the antenna without increasing the size of the antenna.

le = lumpedElement(Name,Value) returns the lumped element circuit based on the properties
specified by one or more Name,Value pair arguments.

 lumpedElement

5-121

Examples

Antenna Using Frequency Independent Load

Create a resistor with 50 Ohms of impedance. Any pure resistive load has a nonvariable impedance
when the frequency changes.

le = lumpedElement('Impedance',50);

Create a dipole antenna. Calculate the impedance of the antenna without loading the antenna.

d = dipole;
i1 = impedance(d,70e6)

i1 = 72.9381 - 1.2090i

Load the antenna using a frequency-independent resistor. Calculate the impedance of the antenna.

d.Load = le;
i1e1 = impedance(d,70e6)

i1e1 = 1.2294e+02 - 1.2090e+00i

Change the frequency to 85 MHz and calculate the impedance of the antenna.

ile2 = impedance(d,85e6)

ile2 = 2.3009e+02 + 1.1005e+02i

Antenna with Two Loads at Arbitrary Locations

Create a dipole antenna using one load at the antenna feed and one load at a location above the
antenna feed.

Create a dipole antenna.

d = dipole;

Create two lumped elements to load the dipole antenna.

One lumped element of impedance, 50 Ohms, loads the antenna at the feed.

l1 = lumpedElement('Impedance', complex(50, -20), 'Location', 'feed');

The second lumped element of complex impedance, 50+ j*20 Ohms, loads the antenna at the top.
Locate the load half distance from the feed.

l2 = lumpedElement('Impedance', complex(50, -20), 'Location', [0 0 0.5]);

Add the two loads to the dipole antenna.

 d.Load = [l1, l2];

View the dipole antenna.

5 Methods

5-122

show(d);

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Frequency',2e9

Impedance — Complex impedance of circuit
real or complex vector of Z-parameters in ohms

Complex impedance of circuit, specified as the comma-separated pair consisting of 'Impedance'
and a real or complex vector of z-parameters in ohms.
Example: 'Impedance',complex(75,30) specifies a complex impedance of 75+i30.
Data Types: double

Frequency — Frequency of operation
real vector in Hz

 lumpedElement

5-123

Frequency of operation, specified as the comma-separated pair consisting of 'Frequency' and a real
vector in Hz.
Example: 'Frequency',[10e6,20e6,30e6]
Data Types: double

Location — Location of load
[0 0 0] (default) | Cartesian coordinates

Location of load, specified as the comma-separated pair consisting of 'Location' and Cartesian
coordinates.
Example: 'Location',[0 0 0.5]
Data Types: double

Output Arguments
le — Lumped element
lumpedElement object

Lumped element, returned as a lumpedElement object. The real part of the complex number
indicates the resistance. The imaginary part of the complex number indicates the reactance.

See Also
dielectric

Introduced in R2016b

5 Methods

5-124

vswr
Voltage standing wave ratio of antenna

Syntax
vswr(antenna,frequency,z0)
vswrant = vswr(antenna,frequency,z0)

Description
vswr(antenna,frequency,z0) calculates and plots the voltage standing wave ratio of an antenna,
over specified frequency range, and given reference impedance, z0.

vswrant = vswr(antenna,frequency,z0) returns the vswr of the antenna.

Examples

Plot VSWR of Antenna

Plot vswr (voltage standing wave ratio) of a circular loop antenna.

h = loopCircular;
vswr(h,50e6:1e6:100e6,50)

 vswr

5-125

Calculate VSWR of Antenna

Calculate vswr (voltage standing wave ratio) of a helix antenna.

h = helix;
hvswr = vswr(h,2e9:1e9:4e9,50)

hvswr = 1×3

 3.5730 6.7043 3.3598

Input Arguments
antenna — Antenna object
scalar handle

Antenna object, specified as a scalar handle.

frequency — Frequency range used to calculate VSWR
vector in Hz

5 Methods

5-126

Frequency range used to calculate VSWR, specified as a vector in Hz. The minimum value of
frequency must be 1 kHz.
Example: 50e6:1e6:100e6
Data Types: double

z0 — Reference impedance
50 (default) | scalar

Reference impedance, specified as a scalar in ohms.

Output Arguments
vswrant — Voltage standing wave ratio
vector in dB

Voltage standing wave ratio, returned as a vector in dB.

See Also
impedance

Introduced in R2015a

 vswr

5-127

correlation
Correlation coefficient between two antennas in array

Syntax
correlation(array,frequency,elem1,elem2,z0)
rho = correlation(array,frequency,elem1,elem2,z0)

Description
correlation(array,frequency,elem1,elem2,z0) calculates and plots the correlation
coefficient between two antenna elements, elem1 and elem2 of an array. The correlation values are
calculated for a specified frequency and impedance and for a specified impedance z0.

rho = correlation(array,frequency,elem1,elem2,z0) returns the correlation coefficient
between two antenna elements, elem1 and elem2 of an array.

Examples

Plot Correlation of Array

Plot the correlation between 1 and 2 antenna elements in a default linear array over a frequency
range of 50MHz to 100MHz.

h = linearArray;
correlation (h,50e6:1e6:100e6,1,2);

5 Methods

5-128

Calculate Correlation Coefficient of Array

Calculate correlation coefficient of default rectangular array at a frequency range of 50MHz to
100MHz.

h = rectangularArray;
rho = correlation (h, 50e6:1e6:100e6, 1, 2)

rho = 51×1

 0.1414
 0.1120
 0.0822
 0.0520
 0.0212
 0.0106
 0.0433
 0.0767
 0.1098
 0.1412
 ⋮

 correlation

5-129

Input Arguments
array — Array object
scalar handle

Array object, specified as a scalar handle.

frequency — Frequency range used to calculate correlation
vector in Hz

Frequency range used to calculate correlation, specified as a vector in Hz.
Example: 50e6:1e6:100e6
Data Types: double

elem1,elem2 — Antenna elements in an array
scalar handle

Antenna elements in an array, specified as a scalar handle.

z0 — Reference impedance
50 (default) | scalar in ohms

Reference impedance, specified as a scalar in ohms.
Example: 70
Data Types: double

Output Arguments
rho — Correlation coefficient between two antenna elements of an array
vector

Correlation coefficient between two antenna elements of an array, returned as a vector.

References
[1] S. Blanch, J. Romeu, and I. Corbella. Exact representation of antenna system diversity

performance from input parameter description. Electron. Lett., vol. 39, pp. 705-707, May
2003.

See Also
impedance | returnLoss | sparameters

Introduced in R2015a

5 Methods

5-130

cylinder2strip
Cylinder equivalent width approximation

Syntax
w = cylinder2strip(r)

Description
w = cylinder2strip(r) calculates the equivalent width of a strip approximation for a cylinder
cross section.

Examples

Calculate Cylinder to Strip Approximation

Calculate the width of the strip approximation to a cylinder of radius 20 mm.

w = cylinder2strip(20e-3)

w = 0.0800

Input Arguments
r — Cylindrical cross-section radius
scalar in meters | vector in meters

Cylindrical cross-section radius, specified as a scalar or vector in meters.
Example: 20e-3
Data Types: double

Output Arguments
w — Equivalent width of strip
scalar | vector

Equivalent width of strip, returned as a scalar or vector.
Data Types: double

See Also
helixpitch2spacing

Introduced in R2015a

 cylinder2strip

5-131

helixpitch2spacing
Spacing between turns of helix

Syntax
s = helixpitch2spacing(a,r)

Description
s = helixpitch2spacing(a,r) calculates the spacing between the turns of a helix antenna given
the pitch angle, a, and the radius of the helix, r.

Examples

Calculate Spacing Between Helix Turns

Calculate spacing for helix with pitch varying from 12 degrees to 14 degrees in steps of 0.5 and 20
mm radius.

s = helixpitch2spacing(12:0.5:14,20e-3)

s = 1×5

 0.0267 0.0279 0.0290 0.0302 0.0313

Calculate Spacing for Helix with Varying Pitch

Calculate spacing for helix with pitch varying from 12 degrees to 14 degrees in steps of 0.5 and
radius 20 mm.

s = helixpitch2spacing(12:0.5:14,20e-3)

s = 1×5

 0.0267 0.0279 0.0290 0.0302 0.0313

Calculate Spacing of Helix Antenna with Varying Radius

Calculate the spacing of a helix that has a pitch of 12 degrees and a radius that varies from 20 mm to
22 mm in steps of 0.5 mm.

s = helixpitch2spacing(12,20e-3:0.5e-3:22e-3)

s = 1×5

5 Methods

5-132

 0.0267 0.0274 0.0280 0.0287 0.0294

Calculate Spacing of Helix with Varying Pitch and Radius

Calculate spacing for helix with pitch varying from 12 degrees to 14 degrees in steps of 0.5 and
radius varying from 20mm to 22mm in steps of 0.5.

s = helixpitch2spacing(12:0.5:14,20e-3:0.5e-3:22e-3)

s = 1×5

 0.0267 0.0286 0.0305 0.0324 0.0345

Input Arguments
a — Pitch angle of helix
scalar in meters | vector in meters

Pitch angle of helix, specified as a scalar or vector in meters.
Example: 12:0.5:14

r — Radius of helix
scalar in meters | vector in meters

Radius of helix, specified as a scalar or vector in meters.
Example: 20e-3

Note If the pitch angle and radius are both vectors, then their lengths must be equal.

Output Arguments
s — Spacing between helix turns
scalar in meters | vector in meters

Spacing between helix turns, returned as a scalar or vector in meters.

See Also
cylinder2strip

Introduced in R2015a

 helixpitch2spacing

5-133

meshconfig
Change mesh mode of antenna structure

Syntax
meshconfig(antenna,mode)

Description
meshconfig(antenna,mode) changes the meshing mode of the antenna according to the text input
mode.

Examples

Change Mesh Configuration of Antenna

Change the mesh configuration of a dipole antenna from auto (default) to manual mode.

h = dipole;
meshconfig(h,'manual')

ans = struct with fields:
 NumTriangles: 0
 NumTetrahedra: 0
 NumBasis: []
 MaxEdgeLength: []
 MeshMode: 'manual'

mesh(h,'MaxEdgeLength',0.1)

5 Methods

5-134

Input Arguments
antenna — Antenna object
scalar handle

Antenna object, specified as a scalar handle.

mode — Meshing mode
'auto' (default) | 'manual'

Meshing mode, specified as 'auto' or 'manual'.
Data Types: char

See Also
mesh | show

Introduced in R2015a

 meshconfig

5-135

numSummationTerms
Change number of summation terms for calculating periodic Green's function

Syntax
numSummationTerms(array,num)

Description
numSummationTerms(array,num) changes the number of summation terms used to calculate
periodic Green's function of the infinite array. This method calculates 2 * num + 1 of the periodic
Green's function. The summation is carried out from –num to +num. A higher number of terms results
in better accuracy but increases the overall computation time.

Input Arguments
array — Infinite array
scalar handle

Infinite array, specified as a scalar handle.

num — Number to calculate summation terms
10 (default) | scalar

Number to calculate summation terms, specified as a scalar. The summation is carried out from –num
to +num.
Example: 50

Examples

Change Number of Summation Terms in Infinite Array

Create an infinite array with the scan elevation at 45 degrees. Calculate the scan impedance. By
default, the number of summation terms used is 21.

h = infiniteArray('ScanElevation',45);
s = impedance(h,1e9)

s = 84.7534 + 70.6406i

Change the number of summation terms to 51. Calculate the scan impedance again.

numSummationTerms(h,25)
s = impedance(h,1e9)

s = 84.8986 + 70.6727i

Change the number of terms to 101. Increasing the number of summation terms results in a more
accurate scan impedance. However, the time required to calculate the scan impedance increases.

5 Methods

5-136

numSummationTerms(h,50)
s = impedance(h,1e9)

s = 84.9424 + 70.6775i

See Also
beamwidth | pattern

Topics
“Infinite Arrays”

Introduced in R2015b

 numSummationTerms

5-137

feedCurrent
Calculate current at feed for antenna or array

Syntax
feedCurrent(obj,frequency)

Description
feedCurrent(obj,frequency) calculates the current at the feed for an antenna or array object at
a specified frequency. The feed current when multiplied by the antenna impedance gives the voltage
across the antenna.

Examples

Feed Current of Monopole Antenna Excited By Plane Wave.

Excite a monopole antenna using plane wave. Calculate the feed current at 75 MHz.

h = planeWaveExcitation('Element',monopole, 'Direction',[1 0 0])
cur = feedCurrent(h,75e6)

h =

 planeWaveExcitation with properties:

 Element: [1×1 monopole]
 Direction: [1 0 0]
 Polarization: [0 0 1]

cur =

 0.0132 - 0.0133i

Feed Current of Rounded-Bowtie Antenna

Calculate the feed current of a rounded-bowtie designed for operation at 2.4 GHz.

b = design(bowtieRounded,2.4e9);
If = feedCurrent(b,2.4e9)

If = 0.0294 - 0.0012i

5 Methods

5-138

Feed Current of Dipole Antenna

Calculate the feed current of a dipole antenna designed for operation at 70 MHz and 75 MHz.

feedCurrent(dipole, [75e6, 70e6])

ans = 1×2 complex

 0.0136 + 0.0001i 0.0089 - 0.0034i

Input Arguments
obj — Antenna or array object
object handle

Antenna or array object, specified as an object handle.

frequency — Frequency to calculate feed current
scalar | vector in Hz

Frequency to calculate feed current, specified as a scalar integer in Hz.

See Also
current

Introduced in R2017a

 feedCurrent

5-139

fieldsCustom
Plot electric or magnetic fields of antenna

Syntax
fieldsCustom(fields,points)
fieldsCustom(fields,points,scalefield)
qobj = fieldsCustom(___)

fieldsCustom(axeshandle, ___)

Description
fieldsCustom(fields,points) plots electric or magnetic field vectors, fields, at specified
points in space, points, in the current axes.

fieldsCustom(fields,points,scalefield) scales the field arrows by a scalar value,
scalefield.

qobj = fieldsCustom(___) returns the quiver object, using either of the previous syntaxes.

fieldsCustom(axeshandle, ___) plots into the axes specified by axeshandle instead of the
current axes.

Examples

Visualize Magnetic Field of Antenna Using fieldsCustom

Load and visualize the magnetic field data available in the file 'fielddata.mat'.

load fielddata
fieldsCustom(H,p)

5 Methods

5-140

Scale the magnetic field arrows by a factor of 2.

figure
fieldsCustom(H,p,2)

 fieldsCustom

5-141

Input Arguments
fields — Electric or magnetic field vectors
3-by-p complex matrix

Electric or magnetic field vectors, specified as a 3-by-p complex matrix. p is the number of points in
space.
Data Types: double

points — x, y, z coordinates in space
3-by-p real matrix

x, y, z coordinates in space, specified as a 3-by-p real matrix. p is the number of points in space.
Data Types: double

axeshandle — Axes object
object handle

Axes object, specified as an object handle.
Data Types: char

scalefield — Value by which to scale field arrows
0.9 (default) | scalar

5 Methods

5-142

Value by which to scale the field arrows, specified as a scalar. A value of 2 doubles the relative length
of the field arrows. A value of 0.5 halves the length of the field arrows. A value of 0 plots the field
arrows without automatic scaling.
Example: 2
Data Types: double

Output Arguments
qobj — Electric or magnetic field plot
quiver object handle

Electric or magnetic field plot, returned as quiver object handle.

See Also
EHfields | pattern | patternCustom

Introduced in R2016a

 fieldsCustom

5-143

patternCustom
Plot radiation pattern

Syntax
patternCustom(magE,theta,phi)
patternCustom(magE,theta,phi,Name,Value)
hplot = patternCustom(___)

Description
patternCustom(magE,theta,phi) plots the 3-D radiation pattern of an antenna magnitude, magE
over the specified phi and theta angle vectors.

patternCustom(magE,theta,phi,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

hplot = patternCustom(___) returns handles of the lines or surface in the figure window. This
syntax accepts any combination of arguments from the previous syntaxes

Examples

Visualize 3-D Electric Field Pattern of Dipole

Calculate the magnitude, azimuth, and elevation angles of a dipole's electric field at 75 MHz.

d = dipole;
[efield,az,el] = pattern(d, 75e6,'Type','efield');

Extract the theta and phi angles of the electric field magnitude of the antenna.

phi = az';
theta = (90-el);
MagE = efield';

Plot the 3-D electric field pattern.

patternCustom(MagE,theta,phi);

5 Methods

5-144

Visualize 2-D Radiation Patterns of Helix Directivity

Calculate the magnitude, azimuth, and elevation angles of a helix's directivity at 2 GHz.

h = helix;
[D,az,el] = pattern(h,2e9);

Extract theta and phi angles of the directivity magnitude.

phi = az';
theta = (90-el);
MagE = D';

Plot 2-D phi slice of the antenna in rectangular coordinates.

figure;
patternCustom(MagE,theta,phi,'CoordinateSystem','rectangular',...
 'Slice','phi','SliceValue',0);

 patternCustom

5-145

Plot 2-D phi slice of the antenna in polar coordinates.

figure;
patternCustom(MagE, theta, phi,'CoordinateSystem','polar',...
 'Slice','phi','SliceValue',0);

5 Methods

5-146

Visualize Radiation Pattern From Antenna Data File

Consider a helix antenna data file in .csv format. This file contains the magnitude of the antenna
directivity in phi and theta angles. Read the file .

helixdata = csvread('antennadata_test.csv',1,0);

Use patternCustom to extract the magnitude of directivity, and the phi, and theta angle values. Plot
the 3-D polar radiation pattern.

patternCustom(helixdata(:,3),helixdata(:,2),helixdata(:,1));

 patternCustom

5-147

Use the same data to plot the 3-D rectangular radiation pattern.

figure
patternCustom(helixdata(:,3),helixdata(:,2),helixdata(:,1),...
 'CoordinateSystem','rectangular');

5 Methods

5-148

Input Arguments
magE — Magnitude of plotted quantity
real vector | matrix

Magnitude of plotted quantity, specified as one of the following:

• A N-by-1 real vector . N is the same size as the phi and theta angle vectors.
• A M-by-R matrix. The matrix should be the same size as phixtheta.

where theta and phi angles are in the spherical coordinate system specified as a vector.

Data quantities plotted include directivity, E-fields, H-fields, or power of an antenna or array object.
Data Types: double

theta — Theta angles in spherical coordinates
vector in degrees

Theta angles in spherical coordinates, specified as a vector in degrees. If azimuth and elevation
values are given, theta angle values are 90 degrees minus elevation.
Data Types: double

phi — Phi angles in spherical coordinates
vector in degrees

 patternCustom

5-149

Phi angles in spherical coordinates, specified as a vector in degrees. If azimuth and elevation values
are given, phi angle values are same as azimuth values.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'CoordinateSystem','rectangular'

CoordinateSystem — Coordinate system of radiation pattern
'polar' (default) | 'rectangular'

Coordinate system of radiation pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of these values: 'polar', 'rectangular'.
Example: 'CoordinateSystem','polar'
Data Types: char

Slice — Plane to visualize 2-D data
'theta' | 'phi'

Plane to visualize 2-D data, specified as a comma-separated pair consisting of 'Slice' and 'theta'
or 'phi'.
Example: 'Slice','phi'
Data Types: char

SliceValue — Angle values for slice
scalar | vector

Angle values for slice, specified as a comma-separated pair consisting of 'SliceValue' and a scalar
or a vector.

Output Arguments
hplot — Lines or surfaces in figure window
object handle

Lines or surfaces in figure window, returned as object handle.

See Also
EHfields | fieldsCustom | pattern | polarpattern

Introduced in R2016a

5 Methods

5-150

msiread
Read MSI planet antenna file

Syntax
msiread(fname)
[horizontal] = msiread(fname)
[horizontal,vertical] = msiread(fname)
[horizontal,vertical,optional] = msiread(fname)

Description
msiread(fname) reads an MSI planet antenna file in .pln, or .msi formats.

[horizontal] = msiread(fname) reads the file and returns a structure containing horizontal
gain data.

[horizontal,vertical] = msiread(fname) reads the file and returns structures containing
horizontal and vertical gain data.

[horizontal,vertical,optional] = msiread(fname) reads the file and returns structures
containing horizontal gain data, vertical gain data, and all additional data in the file.

Examples

Write and Read MSI Antenna Data File

Create a helix antenna and plot the elevation pattern at 2 GHz.

h = helix;
patternElevation(h,2e9,[0 45 90],'Elevation',0:1:360);

 msiread

5-151

Write the elevation pattern of the helix antenna in an MSI Planet Antenna file.

msiwrite(h,2e9,'helix','Name','Helix Antenna Specifications')

The msiwrite function saves a file named helix.pln to the default MATLAB™ folder.

NAME Helix Antenna Specifications
FREQUENCY 2000.0
GAIN 8.74 dBi
HORIZONTAL 360
0.00 13.56
1.00 13.48
2.00 13.39
3.00 13.30
4.00 13.22
5.00 13.13

Read the MSI antenna data file created.

msiread helix.pln

ans = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 2.0000e+09

5 Methods

5-152

 Slice: 'Elevation'

Read Horizontal, Vertical and Optional Data from Antenna File

Read horizontal, vertical and optional data from the antenna data file Test_file_demo.pln.

[Horizontal,Vertical,Optional] = msiread('Test_file_demo.pln')

Horizontal = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBd'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 659000000
 Slice: 'Elevation'

Vertical = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBd'
 Azimuth: 0
 Elevation: [360x1 double]
 Frequency: 659000000
 Slice: 'Azimuth'

Optional = struct with fields:
 name: 'Sample.pln'
 make: 'Sample 4DR-16-2HW'
 frequency: 659000000
 h_width: 180
 v_width: 7.3000
 front_to_back: 34
 gain: [1x1 struct]
 tilt: 'MECHANICAL'
 polarization: 'POL_H'
 comment: 'Ch-45 0 deg dt'
 scaling_mode: 'AUTOMATIC'

Input Arguments
fname — Name of MSI file
character vector

Name of MSI file, specified as a character vector. The files must be a .pln or .msi format.

 msiread

5-153

Output Arguments
horizontal — Horizontal gain data
structure

Horizontal gain data, returned as a structure containing the following fields:

• PhysicalQuantity — Quantity specified in the MSI file, returned as one of the values: 'E-
field', 'H-field', 'directivity', 'power', 'powerdB', or 'Gain'.

• Magnitude — Magnitude values of the quantity specified in the MSI file, returned as a real vector
of size N–by–1 where N is same size as theta and phi angles.

• Units — Units of the quantity specified in the MSI file, returned as one of the values: 'dBi',
'dB', 'V/m', 'watts', or 'dBd'.

• Azimuth — Azimuth angles specified in the MSI file, returned as a scalar or a vector in degrees.
• Elevation — Elevation angles specified in the MSI file, returned as a scalar or a vector in

degrees.
• Frequency — Frequency specified in the MSI file, returned as a scalar or a vector in Hertz.
• Slice — Type of data set variation, returned as text. The variations are 'Azimuth' or

'Elevation'.

vertical — Vertical gain data
structure

Vertical gain data, returned as a structure containing the following fields:

• PhysicalQuantity — Quantity specified in the MSI file, returned as one of the values: 'E-
field', 'H-field', 'directivity', 'power', 'powerdB', or 'Gain'.

• Magnitude — Magnitude values of the quantity specified in the MSI file, returned as a real vector
of size N–by–1 where N is same size as theta and phi angles.

• Units — Units of the quantity specified in the MSI file, returned as one of the values: 'dBi',
'dB', 'V/m', 'watts', or 'dBd'.

• Azimuth — Azimuth angles specified in the MSI file, returned as a scalar or a vector in degrees.
• Elevation — Elevation angles specified in the MSI file, returned as a scalar or a vector in

degrees.
• Frequency — Frequency specified in the MSI file, returned as a scalar or a vector in Hertz.
• Slice — Type of data set variation, returned as text. The variations are Azimuth or Elevation.

optional — Additional data
structure

Additional data, returned as a structure containing (but not limited to): Name, Make, Frequency,
H_width, V_width, Front_to_back, Gain, Tilt, Polarization, Comment.

See Also
msiwrite

Topics
“Read, Visualize and Write MSI Planet Antenna Files”

5 Methods

5-154

Introduced in R2016a

 msiread

5-155

msiwrite
Write data in MSI planet antenna file format

Syntax
msiwrite(fname,dataslice1,dataslice2)
msiwrite(fname,dataslice1,dataslice2,optional)

msiwrite(objname,frequency,fname)
msiwrite(objname,frequency,fname,Name,Value)

Description
msiwrite(fname,dataslice1,dataslice2) writes the data from structures dataSlice1 and
dataSlice2 to an MSI planet antenna file called fname.

msiwrite(fname,dataslice1,dataslice2,optional) writes the data from structures
dataSlice1, dataSlice2, and optional to an MSI planet antenna file called fname.

msiwrite(objname,frequency,fname) writes calculated data of an antenna or array object at a
specified frequency to an MSI planet antenna file called fname.

msiwrite(objname,frequency,fname,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Write and Read MSI Antenna Data File

Create a helix antenna and plot the elevation pattern at 2 GHz.

h = helix;
patternElevation(h,2e9,[0 45 90],'Elevation',0:1:360);

5 Methods

5-156

Write the elevation pattern of the helix antenna in an MSI Planet Antenna file.

msiwrite(h,2e9,'helix','Name','Helix Antenna Specifications')

The msiwrite function saves a file named helix.pln to the default MATLAB™ folder.

NAME Helix Antenna Specifications
FREQUENCY 2000.0
GAIN 8.74 dBi
HORIZONTAL 360
0.00 13.56
1.00 13.48
2.00 13.39
3.00 13.30
4.00 13.22
5.00 13.13

Read the MSI antenna data file created.

msiread helix.pln

ans = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 2.0000e+09

 msiwrite

5-157

 Slice: 'Elevation'

Input Arguments
fname — Name of MSI file
.pln (default) | character vector

Name of MSI file, specified as a character vector. By default, msiwrite writes the MSI planet
antenna file that has a .pln format.

dataslice1 — Horizontal or vertical gain data
structure

Horizontal or vertical gain data, specified as a structure containing the following fields:

• PhysicalQuantity — Measured quantity in the MSI file: E-field, H-field, directivity,
power, powerdB, or, gain.

• Magnitude — Magnitude values of the measured quantity.
• Units — Units of the measured quantity.
• Azimuth — Azimuth angles.
• Elevation — Elevation angles.
• Frequency — Frequency of operation.
• Slice — Type of data set variation: Azimuth, or Elevation.

dataslice2 — Horizontal or vertical gain data
structure

Horizontal or vertical gain data, specified as a structure containing the following fields:

• PhysicalQuantity — Measured quantity in the MSI file: E-field, H-field, directivity,
power, powerdB, or, gain.

• Magnitude — Magnitude values of the measure quantity.
• Units — Units of the measured quantity.
• Azimuth — Azimuth angles.
• Elevation — Elevation angles.
• Frequency — Frequency of operation.
• Slice — Type of data set variation: Azimuth, or Elevation.

optional — Additional data
structure

Additional data, specified as a structure containing the following fields: Name, Make, Frequency,
H_width, V_width, Front_to_back, Gain, Tilt, Polarization, Comment.

objname — Antenna or array object
antenna or array handle

Antenna or array object, specified as an antenna or array handle.

5 Methods

5-158

frequency — Frequency of operation of antenna or array object
positive numeric scalar

Frequency of operation of antenna or array object, specified as a positive numeric scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Comment', 'horn antenna'

Name — Title of file
character vector

Title of file in the first line, specified as the comma-separated pair consisting of 'Name' and a
character vector.
Example: 'Name', 'Designed Helix Antenna in MATLAB'
Data Types: char

Comment — Comments about antenna or array data file
character array

Comments about an antenna or array data file, specified as the comma-separated pair consisting of
'Comment' and a character array.
Example: 'Comment', 'This antenna is for space simulations.'
Data Types: char

See Also
msiread

Topics
“Read, Visualize and Write MSI Planet Antenna Files”

Introduced in R2016a

 msiwrite

5-159

dielectric
Dielectric material for use as substrate

Syntax
d = dielectric(material)
d = dielectric(Name,Value)

Description
d = dielectric(material) returns dielectric materials for use as a substrate in antenna
elements.

d = dielectric(Name,Value) returns dielectric materials, based on the properties specified by
one or more Name,Value pair arguments.

Examples

PIFA Antenna with Dielectric Substrate

Use a Teflon dielectric material as a substrate for a PIFA antenna. View the antenna.

d = dielectric('Teflon')

d =
 dielectric with properties:

 Name: 'Teflon'
 EpsilonR: 2.1000
 LossTangent: 2.0000e-04
 Thickness: 0.0060

For more materials see catalog

p = pifa('Height',0.0060,'Substrate',d)

p =
 pifa with properties:

 Length: 0.0300
 Width: 0.0200
 Height: 0.0060
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.0360
 GroundPlaneWidth: 0.0360
 PatchCenterOffset: [0 0]
 ShortPinWidth: 0.0200
 FeedOffset: [-0.0020 0]
 Tilt: 0
 TiltAxis: [1 0 0]

5 Methods

5-160

 Load: [1x1 lumpedElement]

show(p)

Custom Dielectric Properties

Create a patch microstrip antenna using a substrate with a relative permittivity of 2.70, a loss
tangent of 0.002 and a thickness of 0.0008 m. View the antenna.

t = dielectric('Name','Taconic_TLC','EpsilonR',2.70,'LossTangent',0.002,...
 'Thickness',0.0008);
p = patchMicrostrip('Height',0.0008,'Substrate',t)

p =
 patchMicrostrip with properties:

 Length: 0.0750
 Width: 0.0375
 Height: 8.0000e-04
 Substrate: [1x1 dielectric]
 GroundPlaneLength: 0.1500
 GroundPlaneWidth: 0.0750
 PatchCenterOffset: [0 0]
 FeedOffset: [-0.0187 0]

 dielectric

5-161

 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(p)

Patch Antenna with Air Gap between Groundplane and Dielectric

Create a microstrip patch antenna.

p = patchMicrostrip;

For properties of air and teflon dielectrics use Dielectric Catalog.

openDielectricCatalog

5 Methods

5-162

Use Teflon as a dielectric substrate. There is an air gap between the patch groundplane and the
dielectric.

sub = dielectric('Name',{'Air','Teflon'},'EpsilonR',[1 2.1],...
 'Thickness',[.002 .004],'LossTangent',[0 2e-04]);

Add the substrate to the patch antenna.

p.Substrate = sub;
figure
show(p)

 dielectric

5-163

Three Layer Dielectric Substrate between Patch and Ground Plane

Create a microstrip patch antenna.

p = patchMicrostrip;

For dielectric properties, use the Dielectric Catalog.

openDielectricCatalog

Use FR4, Teflon and Foam as the three layers of the substrate.

sub = dielectric('Name',{'FR4','Teflon','Foam'},'EpsilonR',...
 [4.80 2.10 1.03],'Thickness',[0.002 0.004 0.001],...
 'LossTangent',[0.0260 2e-04 1.5e-04]);

Add the three layer substrate to the patch antenna.

p.Substrate = sub;
figure
show(p)

5 Methods

5-164

Plot the radiation pattern of the antenna.

figure
pattern(p,1.67e9)

 dielectric

5-165

Infinite Reflector Backed Dielectric Substrate Antenna

Design a dipole antenna backed by a dielectric substrate and an infinite reflector.

Create a dipole antenna of length, 0.15 m, and width, 0.015 m.

d = dipole('Length',0.15,'Width',0.015, 'Tilt',90,'TiltAxis',[0 1 0]);

Create a reflector using the dipole antenna as an exciter and the dielectric, teflon as the substrate.

t = dielectric('Teflon')

t =
 dielectric with properties:

 Name: 'Teflon'
 EpsilonR: 2.1000
 LossTangent: 2.0000e-04
 Thickness: 0.0060

For more materials see catalog

rf = reflector('Exciter',d,'Spacing',7.5e-3,'Substrate',t);

Set the groundplane length of the reflector to inf. View the structure.

5 Methods

5-166

rf.GroundPlaneLength = inf;
show(rf)

Calculate the radiation pattern of the antenna at 70 MHz.

pattern(rf,70e6)

 dielectric

5-167

Antenna On Dielectric Substrate - Compare Gain Values

Compare the gain values of a dipole antenna in free space and dipole antenna on a substrate.

Design a dipole antenna at 1 GHz.

d = design(dipole,1e9);
l_by_w = d.Length/d.Width;
d.Tilt = 90;
d.TiltAxis = [0 1 0];

Plot the radiation pattern of the dipole in free space at 1GHz.

figure
pattern(d,1e9);

5 Methods

5-168

Use FR4 as the dielectric substrate.

t = dielectric('FR4')

t =
 dielectric with properties:

 Name: 'FR4'
 EpsilonR: 4.8000
 LossTangent: 0.0260
 Thickness: 0.0060

For more materials see catalog

eps_r = t.EpsilonR;
lambda_0 = physconst('lightspeed')/1e9;
lambda_d = lambda_0/sqrt(eps_r);

Adjust the length of the dipole based on the wavelength.

d.Length = lambda_d/2;
d.Width = d.Length/l_by_w;

Design a reflector at 1 GHz with the dipole as the excitor and FR4 as the substrate.

rf = design(reflector,1e9);
rf = reflector('Exciter',d,'Spacing',7.5e-3,'Substrate',t);

 dielectric

5-169

rf.GroundPlaneLength = lambda_d;
rf.GroundPlaneWidth = lambda_d/4;
figure
show(rf)

Remove the groundplane for plotting the gain of the dipole on the substrate.

rf.GroundPlaneLength = 0;
show(rf)

5 Methods

5-170

Plot the radiation pattern of the dipole on the substrate at 1 GHz.

figure
pattern(rf,1e9);

 dielectric

5-171

Compare the gain values.

• Gain of the dipole in free space = 2.11 dBi
• Gain of the dipole on substrate = 1.93 dBi

Input Arguments
material — Material from dielectric catalog
'Air' (default)

Material from the dielectric catalog, specified as one of the values from the DielectricCatalog.
Example: 'FR4'
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Name','Air'

Name — Name of dielectric material
character vector

5 Methods

5-172

Name of the dielectric material you want to specify in the output, specified as the comma-separated
pair consisting of 'Name' and a character vector.
Example: 'Name','Taconic_TLC'
Data Types: char

EpsilonR — Relative permittivity of dielectric material
1 | vector

Relative permittivity of the dielectric material, specified as the comma-separated pair consisting of
'EpsilonR' and vector.
Example: 'EpsilonR',4.8000
Data Types: double

LossTangent — Loss in dielectric material
0 (default) | vector

Loss in the dielectric material, specified as the comma-separated pair consisting of 'LossTangent'
and vector.
Example: 'LossTangent',0.0260
Data Types: double

Note In Antenna Toolbox, the upper limit to loss tangent value is 0.03.

Thickness — Thickness of dielectric material
0.0060 (default) | vector in meters

Thickness of the dielectric material along default z-axis, specified as the comma-separated pair
consisting of 'Thickness' and vector in meters. This property applies only when you call the
function with no output arguments.
Example: 'Thickness', 0.05
Data Types: double

Output Arguments
d — Dielectric material
object handle

Dielectric material, returned as an object handle. You can use the dielectric material object handle to
add dielectric material to an antenna.

See Also
DielectricCatalog

Topics
“Antenna Toolbox Limitations”

 dielectric

5-173

Introduced in R2016a

5 Methods

5-174

DielectricCatalog
Catalog of dielectric materials

Syntax
dc = DielectricCatalog

Description
dc = DielectricCatalog creates an object handle for the dielectric catalog.

• To open the dielectric catalog, use open(dc)
• To know the properties of a dielectric material from the dielectric catalog, use s = find(dc,

name).

Examples

Use Dielectric Catalog Element in Cavity

Open the dielectric catalog.

dc = DielectricCatalog;
open(dc)

List the properties of the dielectric material Foam.

s = find(dc,'Foam')

s = struct with fields:
 Name: 'Foam'
 Relative_Permittivity: 1.0300
 Loss_Tangent: 1.5000e-04
 Frequency: 50000000
 Comments: ''

 DielectricCatalog

5-175

Use the material Foam as a dielectric in a cavity antenna of height and spacing, 0.0060 m.

d = dielectric('Foam');
c = cavity('Height',0.0060,'Spacing',0.0060,'Substrate',d)

c =
 cavity with properties:

 Exciter: [1x1 dipole]
 Substrate: [1x1 dielectric]
 Length: 0.2000
 Width: 0.2000
 Height: 0.0060
 Spacing: 0.0060
 EnableProbeFeed: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show (c)

Input Arguments
name — Name of dielectric material
'Air' (default) | character vector

Name of a dielectric material from the dielectric catalog, specified as a character vector.
Example: 'FR4'
Data Types: char

dc — Dielectric catalog
object handle

Dielectric catalog, specified as an object handle.
Data Types: char

5 Methods

5-176

Output Arguments
dc — Dielectric catalog
object handle

Dielectric catalog, returned as an object handle.

s — Parameters of dielectric material
structure

Parameters of a dielectric material from the dielectric catalog, returned as a structure.

See Also
dielectric

Introduced in R2016a

 DielectricCatalog

5-177

hornangle2size
Equivalent flare width and flare height from flare angles

Syntax
[flarewidth,flareheight]= hornangle2size(width,height,flarelength,angleE,
angleH)

Description
[flarewidth,flareheight]= hornangle2size(width,height,flarelength,angleE,
angleH) calculates the equivalent flarewidth and flareheight for a rectangular horn antenna
from its flare angles, angleE, and angleH.

Examples

Calculate Flare Width and Flare Height of Horn Antenna

Calculate the flare width and the flare height of a horn antenna with

• Width of the waveguide = 0.0229 m
• Height of the waveguide = 0.0102 m
• Flare length of the horn = 0.2729 m
• Flare angle in the E-plane = 12.2442 degrees
• Flare angle in the H-plane = 14.4712 degrees

width = 0.0229;
height = 0.0102;
flarelength = 0.2729;
angleE = 12.2442;
angleH = 14.4712;
[flarewidth,flareheight] = hornangle2size(width,height,flarelength,...
 angleE,angleH)

flarewidth = 0.1638

flareheight = 0.1286

Input Arguments
width — Rectangular waveguide width
scalar in meters

Rectangular waveguide width, specified a scalar in meters.
Data Types: double

5 Methods

5-178

height — Rectangular waveguide height
scalar in meters

Rectangular waveguide height, specified a scalar in meters.
Data Types: double

flarelength — Flare length of horn
scalar in meters

Flare length of horn, specified as a scalar in meters.
Data Types: double

angleE — Flare angle in E-plane
scalar in degrees

Flare angle in E-plane of the horn, specified as a scalar in degrees.
Data Types: double

angleH — Flare angle in H-plane
scalar in meters

Flare angle in H-plane of the horn, specified as a scalar in degrees.
Data Types: double

Output Arguments
flarewidth — Flare width of horn
scalar in meters

Flare width of horn, returned as a scalar in meters.
Data Types: double

flareheight — Flare height of horn
scalar in meters

Flare height of horn, returned as a scalar in meters.
Data Types: double

See Also
horn

Introduced in R2016a

 hornangle2size

5-179

add
Class: polarpattern

Add data to polar plot

Syntax
add(p,d)
add(p,angle,magnitude)

Description
add(p,d) adds new antenna data to the polar plot, p based on the real amplitude values, data.

add(p,angle,magnitude) adds data sets of angle vectors and corresponding magnitude
matrices to polar plot p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

Set of angles, specified as a vector in degrees.

5 Methods

5-180

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Add Data To Polar Plot

Create a helix antenna that has 28 mm radius, a 1.2 mm width, and 4 turns. Calculate the directivity
of the antenna at 1.8 GHz.

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
H = pattern(hx, 1.8e9,0,0:1:360);

Plot the polar pattern.

P = polarpattern(H);

Create a dipole antenna and calculate the directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

Add the directivity of the dipole to the existing polar plot of helix antenna.

 add

5-181

add(P,D);

Add Angle and Magnitude Data to Polar Pattern

Create a dipole and plot the polar pattern of its directivity at 75 MHz.

d = dipole;
D = pattern(d,75e6,0,0:1:360);
P = polarpattern(D);

5 Methods

5-182

Create a cavity antenna. Calculate the directivity of the antenna at 1 GHz. Write the directivity of the
antenna to cavity.pln using the msiwrite function.

c = cavity;
msiwrite(c,1e9,'cavity','Name','Cavity Antenna Specifications');

Read the data from cavity.pln to Horizontal, Vertical and Optional structures using the
msiread function.

[Horizontal,Vertical,Optional] = msiread('cavity.pln')

Horizontal = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 1.0000e+09
 Slice: 'Elevation'

Vertical = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: 0
 Elevation: [360x1 double]
 Frequency: 1.0000e+09

 add

5-183

 Slice: 'Azimuth'

Optional = struct with fields:
 name: 'Cavity Antenna Specifications'
 frequency: 1.0000e+09
 gain: [1x1 struct]

Add horizontal directivity data of the cavity antenna to the existing polar pattern of the dipole

add(P,Horizontal.Azimuth,Horizontal.Magnitude);

See Also
addCursor | animate | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a

5 Methods

5-184

addCursor
Class: polarpattern

Add cursor to polar plot angle

Syntax
addCursor(p,angle)
addCursor(p,angle,index)
id = addCursor(___)

Description
addCursor(p,angle) adds a cursor to the active polar plot, p, at the data point closest to the
specified angle. Angle units are in degrees.

The first cursor added is called 'C1', the second 'C2', and so on.

addCursor(p,angle,index) adds a cursor at a specified data set index. index can be a vector of
indices.

id = addCursor(___) returns a cell array with one ID for each cursor created. You can specify
any of the arguments from the previous syntaxes.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

angle — Angle values
scalar in degrees | vector in degrees

Angle values at which the cursor is added, specified as a scalar or a vector in degrees.

index — Data set index
scalar | vector

Data set index, specified as a scalar or a vector.

Examples

Add Cursor to Plot

Create a dipole antenna and calculate its directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

 addCursor

5-185

Add a cursor to the polar plot at approximately 60 degrees. To place the cursor at 60 degrees, move it
there by placing the pointer on the cursor and dragging.

p = polarpattern(D);
addCursor(p,60);

Add Cursors to Two Data Sets

Create a top-hat monopole and plot its directivity at 75 MHz.

m = monopoleTopHat;
M = pattern(m,75e6,0,0:1:360);
P = polarpattern(M);

5 Methods

5-186

Create a dipole antenna and calculate its directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

Add the directivity pattern of the dipole to the polar plot of the top-hat monopole.

add(P,D);

 addCursor

5-187

Add a cursor at approximately 30 degrees to the top-hat monopole polar pattern (data set 1) and at
approximately 150 degrees to the dipole polar pattern (data set 2).

addCursor(P,[30 150],[1 2]);

5 Methods

5-188

See Also
add | animate | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a

 addCursor

5-189

animate
Class: polarpattern

Replace existing data with new data for animation

Syntax
animate(p,data)
animate(p,angle,magnitude)

Description
animate(p,data) removes all the current data from polar plot, p and adds new data, based on real
amplitude values, data.

animate(p,angle,magnitude) removes all the current data polar plot, p and adds new data sets
of angle vectors and corresponding magnitude matrices.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

5 Methods

5-190

Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Replace Existing Polar Plot Data For Animation

Create a helix antenna that has a 28 mm radius, a 1.2 mm width, and 4 turns. Plot the directivity of
the antenna at 1.8 GHz.

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
H = pattern(hx, 1.8e9,0,0:1:360);
P = polarpattern(H);

Create a dipole antenna and calculate its directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

Replace the existing polar plot of the helix antenna with the directivity of the dipole using the
animate method.

 animate

5-191

animate(P,D);

Animate Using Cavity Data

Create a default dipole antenna and plot the polar pattern of its directivity at 1 GHz.

d = dipole;
D = pattern(d,75e6,0,0:1:360);
P = polarpattern(D);

5 Methods

5-192

Create a default cavity antenna. Calculate the directivity of the antenna and write the data to
cavity.pln using the msiwrite function.

c = cavity;
msiwrite(c,2.8e9,'cavity','Name','Cavity Antenna Specifications');

Read the cavity specifications file into Horizontal, Vertical and Optional structures using the
msiread function.

[Horizontal,Vertical,optional]= msiread('cavity.pln')

Horizontal = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: [360x1 double]
 Elevation: 0
 Frequency: 2.8000e+09
 Slice: 'Elevation'

Vertical = struct with fields:
 PhysicalQuantity: 'Gain'
 Magnitude: [360x1 double]
 Units: 'dBi'
 Azimuth: 0
 Elevation: [360x1 double]
 Frequency: 2.8000e+09

 animate

5-193

 Slice: 'Azimuth'

optional = struct with fields:
 name: 'Cavity Antenna Specifications'
 frequency: 2.8000e+09
 gain: [1x1 struct]

Replace data from the dipole antenna with data from cavity antenna.

animate(P,Horizontal.Azimuth,Horizontal.Magnitude);

See Also
add | addCursor | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a

5 Methods

5-194

createLabels
Class: polarpattern

Create legend labels for polar plot

Syntax
createLabels(p,format,array)

Description
createLabels(p,format,array) adds the specified format label to each array of the polar plot
p. The labels are stored as a cell array in the LegendLabels property of p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

format — Format for legend label
cell array

Format for legend label added to the polar plot, specified as a cell array. For more information on
legend label format see, legend.
Data Types: char

array — Values to apply to format
array

Values to apply to format , specified as an array. The values can be an array of angles or array of
magnitude.

Examples

Add Legend Label to Polar Plot

Create a polar plot of unique values. Generate a legend label for this plot.

p = polarpattern(rand(30,4),'Style','filled');
createLabels(p,'az=%d#deg',0:15:45)

 createLabels

5-195

See Also
add | addCursor | animate | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a

5 Methods

5-196

findLobes
Class: polarpattern

Main, back, and side lobe data

Syntax
L = findLobes(p)
L = findLobes(p,index)

Description
L = findLobes(p) returns a structure, L, defining the main, back, and side lobes of the antenna or
array radiation pattern in the specified polar plot, p.

L = findLobes(p,index) returns the radiation pattern lobes from the data set specified in index.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

index — Index of data set
scalar

Index of data set, specified as a scalar.

Examples

Find Main, Back, and Side Lobes

Create a dipole antenna and calculate its directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

Create a polar plot of the dipole directivity. Find the main, back, and side lobes of the dipole antenna.

p = polarpattern(D);

 findLobes

5-197

L = findLobes(p)

L = struct with fields:
 mainLobe: [1x1 struct]
 backLobe: [1x1 struct]
 sideLobes: [1x1 struct]
 FB: 0.0124
 SLL: 0
 HPBW: 30.9141
 FNBW: 89.7507
 FBIdx: [146 326.5000]
 SLLIdx: [146 36]
 HPBWIdx: [129 160]
 HPBWAng: [127.6454 158.5596]
 FNBWIdx: [91 181]

Inspect main, back, and side lobe data.

MainLobe = L.mainLobe

MainLobe = struct with fields:
 index: 146
 magnitude: 3.6675
 angle: 144.5983
 extent: [91 181]

BackLobe = L.backLobe

5 Methods

5-198

BackLobe = struct with fields:
 magnitude: 3.6551
 angle: -35.4017
 extent: [271 361]
 index: 326.5000

SideLobe = L.sideLobes

SideLobe = struct with fields:
 index: 36
 magnitude: 3.6675
 angle: 34.9030
 extent: [2x2 double]

Find Lobes in Two Data Sets

Create a helix antenna that has a 28 mm radius, a 1.2 mm width, and 4 turns. Calculate and plot the
directivity of the antenna at 1.8 GHz.

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
H = pattern(hx, 1.8e9,0,0:1:360);
P = polarpattern(H);

Create a dipole antenna and calculate the directivity at 270 MHz.

 findLobes

5-199

d = dipole;
D = pattern(d,270e6,0,0:1:360);

Add the directivity of the dipole to the existing polar plot.

add(P,D);

Find the main, back, and side lobes of helix antenna.

L = findLobes(P,1)

L = struct with fields:
 mainLobe: [1x1 struct]
 backLobe: [1x1 struct]
 sideLobes: [1x1 struct]
 FB: 11.1523
 SLL: 11.0997
 HPBW: 56.8421
 FNBW: 172.5208
 FBIdx: [90 270.5000]
 SLLIdx: [90 273]
 HPBWIdx: [61 118]
 HPBWAng: [59.8338 116.6759]
 FNBWIdx: [4 177]

5 Methods

5-200

See Also
add | addCursor | animate | createLabels | replace | showPeaksTable | showSpan

Introduced in R2016a

 findLobes

5-201

replace
Class: polarpattern

Replace polar plot data with new data

Syntax
replace(p,data)
replace(p,angle,magnitude)

Description
replace(p,data) removes all data from polar plot, p and adds new data based on real amplitude
values, data.

replace(p,angle,magnitude) removes all the current data and adds new data sets of angle
vectors and corresponding magnitude matrices to the polar plot, p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

5 Methods

5-202

Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Replace Polar Plot Data with New Data

Create a helix antenna that has a 28 mm radius, a 1.2 mm width, and 4 turns. Calculate the
directivity of the antenna at 1.8 GHz.

hx = helix('Radius',28e-3,'Width',1.2e-3,'Turns',4);
H = pattern(hx, 1.8e9,0,0:1:360);

Plot the polar pattern.

P = polarpattern(H);

Create a dipole antenna and calculate its directivity at 270 MHz.

d = dipole;
D = pattern(d,270e6,0,0:1:360);

 replace

5-203

Replace the existing polar plot of the helix antenna with the directivity of the dipole.

replace(P,D);

See Also
add | addCursor | animate | createLabels | findLobes | showPeaksTable | showSpan

Introduced in R2016a

5 Methods

5-204

showPeaksTable
Class: polarpattern

Show or hide peak marker table

Syntax
showPeaksTable(p,vis)

Description
showPeaksTable(p,vis) shows or hides a table of the peak values. By default, the peak values
table is visible.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

vis — Show or hide peaks table
0 | 1

Show or hide peaks table, specified as 0 or 1.

Examples

Peaks of Antenna in Polar Pattern

Create a monopole antenna and calculate the directivity at 1 GHz.

m = monopole;
M = pattern(m,1e9,0,0:1:360);

Plot the polar pattern and show three peaks of the antenna. When creating a polarpattern plot, if
you specify the Peaks property, the peaks table is displayed by default.

P = polarpattern(M,'Peaks',3);

 showPeaksTable

5-205

Hide the table. When the peaks table is hidden, the peak markers display the peak values.

showPeaksTable(P,0);

5 Methods

5-206

See Also
add | addCursor | animate | createLabels | findLobes | replace | showSpan

Introduced in R2016a

 showPeaksTable

5-207

showSpan
Class: polarpattern

Show or hide angle span between two markers

Syntax
showSpan(p,id1,id2)
showSpan(p,id1,id2,true)
showSpan(p,vis)
showSpan(p)
d = showSpan(___)

Description
showSpan(p,id1,id2) displays the angle span between two angle markers, id1 and id2. The
angle span is calculated counterclockwise.

showSpan(p,id1,id2,true) automatically reorders the angle markers such that the initial angle
span is less than or equal to 180° counterclockwise.

showSpan(p,vis) sets angle span visibility by setting vis to true or false.

showSpan(p) toggles the angle span display on and off.

d = showSpan(___) returns angle span details in a structure, d using any of the previous
syntaxes.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

id1,id2 — Cursor or peak marker identifiers
character vector

Cursor or peak marker identifiers, specified as character vector. Adding cursors to the polar plot
creates cursor marker identifiers. Adding peaks to the polar plot creates peak marker identifiers.
Example: showspan(p,'C1','C2'). Displays the angle span between cursors, C1 and C2 in polar
plot, p.

Examples

Show Angle Span

Create a dipole antenna and plot the directivity at 270 MHz.

5 Methods

5-208

d = dipole;
D = pattern(d,270e6,0,0:1:360);
p = polarpattern(D);

Add cursors to the polar plot at approximately 60 and 150 degrees.

addCursor(p,[60 150]);

 showSpan

5-209

Show the angle span between the two angles.

showSpan(p,'C1','C2');

5 Methods

5-210

See Also
add | addCursor | animate | createLabels | findLobes | replace | showPeaksTable

Introduced in R2016a

 showSpan

5-211

arrayFactor
Array factor in dB

Syntax
arrayFactor(object,frequency)
arrayFactor(object,frequency,azimuth,elevation)
arrayFactor(___ ,Name,Value)

[af] = arrayFactor(object,frequency)
[af,azimuth,elevation] = arrayFactor(___)
[af,azimuth,elevation] = arrayFactor(___ ,Name,Value)

Description
arrayFactor(object,frequency) plots the 3-D array factor over the specified frequency value in
dB.

arrayFactor(object,frequency,azimuth,elevation) plots the array factor over the specified
frequency, azimuth, and elevation values.

arrayFactor(___ ,Name,Value) plots the array factor using additional options specified by one
or more Name,Value pair arguments. Specify name-value pair arguments after all other input
arguments.

[af] = arrayFactor(object,frequency) returns the 3-D array factor over the specified
frequency value.

[af,azimuth,elevation] = arrayFactor(___) returns the array factor at the specified
frequency, azimuth, and elevation values.

[af,azimuth,elevation] = arrayFactor(___ ,Name,Value) returns the array factor using
additional options specified by one or more Name,Value pair arguments. Specify name-value pair
arguments after all other input arguments.

Examples

Plot Array Factor

Plot the array factor of a default rectangular array at a frequency of 70 MHz.

ra = rectangularArray;
arrayFactor(ra,70e6);

5 Methods

5-212

Input Arguments
object — Input antenna array
object handle

Input antenna array object, specified as an object handle.
Example: r = rectangularArray; arrayFactor (r,70e6). Calculates the array factor of a
rectangular array.

frequency — Frequency value used to calculate array factor
scalar in Hz

Frequency value used to calculate array factor, specified as a scalar in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angle of antenna
–180:5:180 (default) | vector in degrees

Azimuth angle of the antenna, specified as a vector in degrees.
Example: –90:5:90
Data Types: double

 arrayFactor

5-213

elevation — Elevation angle of antenna
–90:5:90 (default) | vector in degrees

Elevation angle of the antenna, specified as a vector in degrees.
Example: 0:1:360
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'CoordinateSystem', rectangular

CoordinateSystem — Coordinate system of array factor
'polar' (default) | 'rectangular' | 'uv'

Coordinate system of array factor, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of these values: 'polar', 'rectangular', 'uv'.
Example: 'CoordinateSystem', 'polar'
Data Types: char

Output Arguments
af — Array factor
matrix in dB

Array factor, returned as a matrix in dB. The matrix size is the product of number of elevation values
and number of azimuth values.

azimuth — Azimuth values
vector in degrees

Azimuth values used to calculate the array factor, returned as a vector in degrees.

elevation — Elevation values
vector in degrees

Elevation values used to calculate the array factor, returned as a vector in degrees.

See Also
feedCurrent | pattern | patternMultiply

Introduced in R2017a

5 Methods

5-214

add
Boolean unite operation on two shapes

Syntax
c = add(shape1,shape2)

Description
c = add(shape1,shape2) unites shape1 and shape2 using the add operation. You can also use
the + to add the two shapes together.

Examples

Add Two Circles

Create and view a default circle.

circle1 = antenna.Circle;

Create a circle with a radius of 1 m. The center of the circle is at [1 0].

circle2 = antenna.Circle('Center',[1 0],'Radius',1);

Add the two circles.

add(circle1,circle2)

 add

5-215

Add Two Shapes

Create circle with a radius of 1 m. The center of the circle is at [1 0].

circle1 = antenna.Circle('Center',[1 0],'Radius',1);

Create a rectangle with a length of 2 m and a width of 4 m centered at the origin.

rect1 = antenna.Rectangle('Length',2,'Width',2);

Add the two shapes together using the + function.

polygon1 = circle1+rect1

polygon1 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [21x3 double]

show(polygon1)

5 Methods

5-216

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = add(rectangle1, rectangle2), where rectangle1 and rectangle2 are shapes
created using antenna.Rectangle object.

See Also
area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract | translate

Introduced in R2017a

 add

5-217

area
Calculate area of shape in square meters

Syntax
a = area(shape)

Description
a = area(shape) calculate area of the shape in units sq.m.

Examples

Create Notched Rectangle

Create a rectangle with a length of 0.15 m, and a width of 0.15 m.

r = antenna.Rectangle('Length',0.15,'Width',0.15);

Create a second rectangle with a length of 0.05 m, and a width of 0.05 m. Set the center of the
second rectangle at half the length of the first rectangle r.

n = antenna.Rectangle('Center',[0.075,0],'Length',0.05,'Width',0.05);

Create and view a notched rectangle by subtracting n from r.

rn = r-n;
show(rn)

5 Methods

5-218

Calculate the area of the notched rectangle.

area(rn)

ans = 0.0212

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = area(rectangle) where rectangle is created using antenna.Rectangle object.

See Also
add | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract | translate

Introduced in R2017a

 area

5-219

intersect
Boolean intersection operation on two shapes

Syntax
c = intersect(shape1,shape2)

Description
c = intersect(shape1,shape2) intersect shape1 and shape2 using the intersect operation. You
can also use the & to intersect the two shapes.

Examples

Intersect Rectangle and Circle

Create a default rectangle.

r = antenna.Rectangle;

Create a default circle.

c = antenna.Circle;

Use intersect to combine the shared surfaces of the rectangle and the circle.

rc = intersect(r,c)

rc =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [12x3 double]

show(rc)
axis equal

5 Methods

5-220

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = intersect(rectangle1, rectangle2) where rectangle1 and rectangle2 are
shapes created using antenna.Rectangle object.

See Also
add | area | mesh | plot | rotate | rotateX | rotateY | rotateZ | show | subtract | translate

Introduced in R2017a

 intersect

5-221

rotate
Rotate shape about axis and angle

Syntax
rotate(shape,angle,axis1,axis2)
c = rotate(shape,angle,axis1,axis2)

Description
rotate(shape,angle,axis1,axis2) rotate shape about an axes object and angle.

c = rotate(shape,angle,axis1,axis2) rotate shape about an axes object and angle.

Examples

Rotate Rectangle

Create a rectangle shape.

r = antenna.Rectangle;
show(r)
axis equal

5 Methods

5-222

Rotate the rectangle at 45 degrees about the Z-axis.

r1 = rotate(r,45,[0 0 0],[0 0 1])

r1 =
 Rectangle with properties:

 Name: 'myrectangle'
 Center: [0 0]
 Length: 1
 Width: 2
 NumPoints: 2

show(r1)

 rotate

5-223

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: area(rectangle) where rectangle is created using antenna.Rectangle object.

axis1,axis2 — Axis of rotation
two three-element vector of Cartesian coordinates in meters

Axis of rotation,specified as two unique three-element vectors of Cartesian coordinates in meters
Example: rotate(rectangle,45,[0 0 0], [0 0 1]) where rectangle is created using
antenna.Rectangle object.
Data Types: double

angle — Angle of rotation
scalar

Angle of rotation, specified as a scalar in degrees
Example: rotate(rectangle,45,[0 0 1], [0 0 0]) rotates the rectangle around X-axis by 45
degrees.

5 Methods

5-224

Data Types: double

See Also
add | area | intersect | mesh | plot | rotateX | rotateY | rotateZ | scale | show | subtract |
translate

Introduced in R2017a

 rotate

5-225

subtract
Boolean subtraction operation on two shapes

Syntax
c = subtract(shape1,shape2)

Description
c = subtract(shape1,shape2) subtracts shape1 and shape2 using the subtract operation. You
can also use the - to subtract the two shapes.

Examples

Create Notched Rectangle

Create a rectangle with a length of 0.15 m, and a width of 0.15 m.

r = antenna.Rectangle('Length',0.15,'Width',0.15);

Create a second rectangle with a length of 0.05 m, and a width of 0.05 m. Set the center of the
second rectangle at half the length of the first rectangle r.

n = antenna.Rectangle('Center',[0.075,0],'Length',0.05,'Width',0.05);

Create and view a notched rectangle by subtracting n from r.

rn = r-n;
show(rn)

5 Methods

5-226

Calculate the area of the notched rectangle.

area(rn)

ans = 0.0212

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = subtract(rectangle1, rectangle2) where rectangle1 and rectangle2 are
shapes created using antenna.Rectangle object.

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
translate

Introduced in R2017a

 subtract

5-227

gerberWrite
Generate Gerber files

Syntax
gerberWrite(designobject)
gerberWrite(designobject,rfconnector)
gerberWrite(designobject,writer)
gerberWrite(designobject,writer,rfconnector)
[a,g] = gerberWrite(designobject,writer,rfconnector)

Description
gerberWrite(designobject) creates a Gerber file from PCB specification files, such as
PCBWriter object or pcbStack object.

Note To create associated files, run some kind of antenna analysis functions such as show, pattern

etc. before running the gerberWrite function.

gerberWrite(designobject,rfconnector) creates Gerber file using specified RF connector.

gerberWrite(designobject,writer) creates a Gerber file using specified PCB writer services.

gerberWrite(designobject,writer,rfconnector) creates a Gerber file using specified PCB
writer and connector services.

[a,g] = gerberWrite(designobject,writer,rfconnector) creates a Gerber file using
specified PCB writer and connector services.

Note You can only use output arguments if the designobject is a pcbStack object.

Examples

Generate Antenna Gerber Files from PCB Stack

Create a patch antenna with FR4 as a dielectric material using pcbStack object.

p = pcbStack;
d = dielectric('FR4');
p.Layers = {p.Layers{1},d,p.Layers{2}};
p.FeedLocations(3:4) = [1 3];
show(p)

5 Methods

5-228

Use a Cinch SMA for feeding the antenna. Use the Mayhew Labs PCB viewer as the 3-D viewer.
Change the file name of the Mayhew Writer services to antenna_design_file.

C = PCBConnectors.SMA_Cinch;
W = PCBServices.MayhewWriter;
W.Filename = 'antenna_design_file';

Generate the Gerber-format files.

[A,g] = gerberWrite(p,W,C)

A =
 PCBWriter with properties:

 Design: [1x1 struct]
 Writer: [1x1 PCBServices.MayhewWriter]
 Connector: [1x1 PCBConnectors.SMA_Cinch]
 UseDefaultConnector: 0
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

 gerberWrite

5-229

g =
'C:\TEMP\Bdoc20b_1465442_10020\ibC4001D\12\tpab043a06\antenna-ex85477975\antenna_design_file'

Show Antenna PCB Design Using Mayhew Manufacturing Service

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna in creating a pcbStack object.

p = pcbStack(fco)

p =
 pcbStack with properties:

 Name: 'Coplanar Inverted-F'
 Revision: 'v1.0'
 BoardShape: [1×1 antenna.Rectangle]
 BoardThickness: 0.0013
 Layers: {[1×1 antenna.Polygon]}
 FeedLocations: [0 0.0500 1]
 FeedDiameter: 5.0000e-04
 ViaLocations: []
 ViaDiameter: []
 FeedViaModel: 'strip'
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1×1 lumpedElement]

figure
show(p)

5 Methods

5-230

Use an SMA_Cinch as an RF connector and Mayhew Writer as a 3-D viewer.

c = PCBConnectors.SMA_Cinch

c =
 SMA_Cinch with properties:

 Type: 'SMA'
 Mfg: 'Cinch'
 Part: '142-0711-202'
 Annotation: 'SMA'
 Impedance: 50
 Datasheet: 'https://belfuse.com/resources/Johnson/drawings/dr-142-0711-202.pdf'
 Purchase: 'https://www.digikey.com/product-detail/en/cinch-connectivity-solutions-johnson/142-0711-202/J10154TR-ND/3587681'
 TotalSize: [0.0071 0.0071]
 GroundPadSize: [0.0024 0.0024]
 SignalPadDiameter: 0.0017
 PinHoleDiameter: 0.0013
 IsolationRing: 0.0041
 VerticalGroundStrips: 1

 Cinch 142-0711-202 (Example Purchase)

s = PCBServices.MayhewWriter

s =
 MayhewWriter with properties:

 gerberWrite

5-231

 BoardProfileFile: 'legend'
 BoardProfileLineWidth: 1
 CoordPrecision: [2 6]
 CoordUnits: 'in'
 CreateArchiveFile: 0
 DefaultViaDiam: 3.0000e-04
 DrawArcsUsingLines: 1
 ExtensionLevel: 1
 Filename: 'untitled'
 Files: {}
 IncludeRootFolderInZip: 0
 PostWriteFcn: @(obj)sendTo(obj)
 SameExtensionForGerberFiles: 0
 UseExcellon: 1

Create an antenna design file using PCBWriter .

PW = PCBWriter(p,s,c)

PW =
 PCBWriter with properties:

 Design: [1×1 struct]
 Writer: [1×1 PCBServices.MayhewWriter]
 Connector: [1×1 PCBConnectors.SMA_Cinch]
 UseDefaultConnector: 0
 ComponentBoundaryLineWidth: 8
 ComponentNameFontSize: []
 DesignInfoFontSize: []
 Font: 'Arial'
 PCBMargin: 5.0000e-04
 Soldermask: 'both'
 Solderpaste: 1

 See info for details

Use the gerberWrite method to create gerber files from the antenna design files. The files generated
are then send to the Mayhew writer manufacturing service.

gerberWrite(PW)

By default, the folder containing the gerber files is called "untitled" and is located in your MATLAB
folder. Running this example automatically opens up the Mayhew Labs PCB manufacturing service in
your internet browser.

5 Methods

5-232

Drag and drop all your files from the "untitled" folder.

 gerberWrite

5-233

Click Done to view your Antenna PCB.

5 Methods

5-234

Gerber Files of Antennas with Multiple Feeds

Design a patch antenna.

p = design(patchMicrostrip,3.5e9);
p.Width = p.Length;
p.Substrate = dielectric('FR4');

Create a stack representation of the patch antenna.

pb = pcbStack(p);

pb.FeedLocations = [pb.FeedLocations;-.007 0 1 3;0 .007 1 3;0 -.007 1 3];

Pick a connector for the feed locations.

 gerberWrite

5-235

C = SMA_Cinchcustom1;

Pick a manufacturing service.

Wr = PCBServices.MayhewWriter;

Create a Gerber file and generate it.

A = PCBWriter(pb,Wr,C);
gerberWrite(A)

Warning: No metal specified for PCB

Gerber File Generation Using Multiple Connectors

Create a probe-fed microstrip patch antenna with four ports.

5 Methods

5-236

p = design(patchMicrostrip('Substrate',dielectric('FR4')),3.5e9);
p.Width = p.Length;
pb = pcbStack(p);
pb.FeedLocations = [pb.FeedLocations;-.007 0 1 3;0 .007 1 3;0 -.007 1 3];
figure
show(pb)

Pick a manufacturing service.

Wr = PCBServices.MayhewWriter;
Wr.Filename = 'Microstrip antenna-4ports';

Pick a connector for the feed locations.

C = SMA_Cinchcustom1;

Create a Gerber file and generate it.

A = PCBWriter(pb,Wr,C);
A.Soldermask = 'neither';
gerberWrite(A)

 gerberWrite

5-237

Input Arguments
designobject — Antenna design geometry file
pcbStack object | PCBWriter object

Antenna design geometry file, specified as a pcbStack object or PCBWriter object.
Example: p1 = pcbStack creates a PCB stack object.p1 gerberWrite(p1) creates a Gerber file
using p1.

5 Methods

5-238

Example: p1 = pcbStack creates a PCB stack object.p1 a = PCBWriter(p1), creates a
PCBWriter object, a. gerberWrite(a), creates a Gerber file using a.

rfconnector — RF connector type
PCBConnector object

RF connector type, specified as a PCBConnector object.
Example: c = PCBConnectors.SMA_Cinch;gerberWrite(p1,c) uses SMA_Cinch RF connector
at the feedpoint.

writer — PCB service
PCBServices object

PCB service, specified as a PCBServices object.
Example: s =PCBServices.MayhewWriter;gerberWrite(p1,s) uses Mayhew Labs PCB service
to create and view the PCB design.

Output Arguments

Note You can only use output arguments if the designobject is a pcbStack object.

a — PCBWriter object
object handle

PCBWriter object that generated the Gerber files, returned as an object handle.

g — Path to generated Gerber files folder
character vector

Path to generated Gerber files folder, returned as character vector.

See Also
PCBConnectors | PCBServices

Introduced in R2017b

 gerberWrite

5-239

openFolder
Open file browser to generated Gerber file folder

Syntax
openFolder(pcbWriterobject)

Description
openFolder(pcbWriterobject) opens the parent folder to the PCB writer Gerber design files. You
use this function once the Gerber files are generated from the PCB Writer object using the
gerberWrite function.

Examples

Location of Gerber Files

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna in creating a pcb stack object.

p = pcbStack(fco);

Use a SMA_Cinch as an RF connector and Mayhew Writer as a manufacturing service.

c = PCBConnectors.SMA_Cinch;
s = PCBServices.MayhewWriter;

Create an antenna design file using PCBWriter.

PW = PCBWriter(p,s,c);

Use the gerberWrite method to create Gerber files from the antenna design files.

gerberWrite(PW)

Open the folder that contains the Gerber files.

openFolder(PW)

5 Methods

5-240

Input Arguments
pcbWriterobject — Antenna design files
PCBWriter object

Antenna design files specified as a PCBWriter object.
Example: p1 = pcbStack creates a PCB stack object.p1 a = PCBWriter(p1).

See Also
gerberWrite | info | sendTo

 openFolder

5-241

Introduced in R2017b

5 Methods

5-242

info
Display information about antenna or array

Syntax
info(antenna)
info(array)

Description
info(antenna) displays information about antenna element. as a structure:

• isSolved – Logical specifying if an antenna is solved.
• isMeshed – Logical specifying if an antenna is meshed.
• MeshingMode – String specifying the meshing mode.
• HasSubstrate – Logical specifying if an antenna uses a substrate.
• HasLoad – Logical specifying if an antenna has a load
• PortFrequency – Scalar or vector of frequencies used for port analysis.
• FieldFrequency – Scalar or vector of frequencies used for field analysis.
• MemoryEstimate – Approximate memory requirement for solving the antenna.

info(array) displays information about array element as a structure:.

• isSolved – Logical specifying if an array is solved.
• isMeshed – Logical specifying if an array is meshed.
• MeshingMode – String specifying the meshing mode.
• HasSubstrate – Logical specifying if an array uses a substrate.
• HasLoad – Logical specifying if an array has a load
• PortFrequency – Scalar or vector of frequencies used for port analysis.
• FieldFrequency – Scalar or vector of frequencies used for field analysis.
• MemoryEstimate – Approximate memory requirement for solving the array.

Examples

Antenna Information

Create a dipole antenna and calculate the impedance at 70 MHz.

d = dipole;
Z = impedance(d,70e6)

Z = 72.9381 - 1.2090i

Display all the information about the dipole antenna.

 info

5-243

info(d)

ans = struct with fields:
 IsSolved: "true"
 IsMeshed: "true"
 MeshingMode: "auto"
 HasSubstrate: "false"
 HasLoad: "false"
 PortFrequency: 70000000
 FieldFrequency: []
 MemoryEstimate: "740 MB"

Input Arguments
antenna — Antenna element
antenna object

Antenna element, specified as an antenna object.
Example: d = dipole;

array — Array element
array object

Array element, specified as an array object.
Example: d = dipole;

See Also
show

Introduced in R2017b

5 Methods

5-244

sendTo
Export generated Gerber Files to service provider

Syntax
sendTo(pcbWriterobject)

Description
sendTo(pcbWriterobject) opens the manufacturing service browser page on your default web
browser and opens the folder containing the Gerber files.

For example, if the manufacturing service is MayhewWriter, then sendTo action opens the Mayhew
Labs online PCB viewer in your default web browser. This function also opens the folder containing
the Gerber files. This simplifies use of the service, enabling you to drag and drop the files to the
website and view the design.

Examples

Open Manufacturing Service Website

Create a coplanar inverted F antenna.

fco = invertedFcoplanar('Height',14e-3,'GroundPlaneLength', 100e-3, ...
 'GroundPlaneWidth', 100e-3);

Use this antenna in creating a pcb stack object.

p = pcbStack(fco);

Use a SMA_Cinch as an RF connector and Mayhew Writer as a manufacturing service.

c = PCBConnectors.SMA_Cinch;
s = PCBServices.MayhewWriter;

Create an antenna design file using PCBWriter.

PW = PCBWriter(p,s,c);

Use the gerberWrite method to create Gerber files from the antenna design files.

gerberWrite(PW)

Open the manufacturing service website to send the Gerber files.

sendTo(PW)

 sendTo

5-245

Input Arguments
pcbWriterobject — Antenna design files
PCBWriter object

Antenna design files, specified as a PCBWriter object.
Example: p1 = pcbStack creates a PCB stack object.p1 a = PCBWriter(p1).

See Also
gerberWrite | info | sendTo

Introduced in R2017b

5 Methods

5-246

getLowPassLocs
Feeding location to operate birdcage as lowpass coil

Syntax
getLowPassLocs(birdcageantenna)

Description
getLowPassLocs(birdcageantenna) returns all the feed locations on the birdcage to operate the
antenna as a lowpass coil. The feeding locations are located in the center of the rungs. Use this
function to find the FeedLocations property value for birdcage.

Examples

Birdcage as Lowpass Coil

b = birdcage;
b.FeedLocations = getLowPassLocs(b)

b =
 birdcage with properties:

 NumRungs: 16
 CoilRadius: 0.4000
 CoilHeight: 0.0400
 RungHeight: 0.4600
 ShieldRadius: 0
 ShieldHeight: 0
 Phantom: []
 FeedLocations: [16x3 double]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(b)

 getLowPassLocs

5-247

Input Arguments
birdcageantenna — Birdcage antenna
object

Birdcage antenna, specified as an object.
Example: b = birdcage b.FeedLocations = getLowPassLocs(b)

See Also

Introduced in R2017b

5 Methods

5-248

getHighPassLocs
Feeding location to operate birdcage as highpass coil

Syntax
getHighPassLocs(birdcageantenna)

Description
getHighPassLocs(birdcageantenna) returns all the feed locations on the birdcage to operate
the antenna as a highpass coil. The feeding locations are along the circumference on the upper and
lower coils of the birdcage. Use this function to find the FeedLocations property value for
birdcage.

Examples

Birdcage as Highpass Coil

b = birdcage;
b.FeedLocations = getHighPassLocs(b)

b =
 birdcage with properties:

 NumRungs: 16
 CoilRadius: 0.4000
 CoilHeight: 0.0400
 RungHeight: 0.4600
 ShieldRadius: 0
 ShieldHeight: 0
 Phantom: []
 FeedLocations: [32x3 double]
 FeedVoltage: 1
 FeedPhase: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(b)

 getHighPassLocs

5-249

Input Arguments
birdcageantenna — Birdcage antenna
object

Birdcage antenna, specified as an object.
Example: b = birdcage b.FeedLocations = getHighPassLocs(b)

See Also

Introduced in R2017b

5 Methods

5-250

rotateX
Rotate shape about X-axis and angle

Syntax
rotateX(shape,angle)
c =c rotateX(shape,angle)

Description
rotateX(shape,angle) rotate shape about an axes object and angle.

c =c rotateX(shape,angle) rotate shape about an axes object and angle.

Examples

Rotate Rectangle About X-Axis

Create a rectangle shape.

r = antenna.Rectangle;
show(r)
axis equal

 rotateX

5-251

Rotate the rectangle at 45 degrees about the x-axis.

r1 = rotateX(r,45)

r1 =
 Rectangle with properties:

 Name: 'myrectangle'
 Center: [0 0]
 Length: 1
 Width: 2
 NumPoints: 2

show(r1)
axis equal

5 Methods

5-252

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: area(rectangle) where rectangle is created using antenna.Rectangle object.

angle — Angle of rotation
scalar

Angle of rotation, specified as a scalar in degrees
Example: rotateX(rectangle,45) rotates the rectangle around X-axis by 45 degrees.
Data Types: double

See Also
add | area | intersect | mesh | plot | rotate | rotateY | rotateZ | scale | show | subtract |
translate

Introduced in R2017a

 rotateX

5-253

rotateY
Rotate shape about Y-axis and angle

Syntax
rotateY(shape,angle)
c = rotateY(shape,angle)

Description
rotateY(shape,angle) rotate shape about the Y-axis and angle.

c = rotateY(shape,angle) rotate shape about the Y-axis and angle.

Examples

Rotate Rectangle About Y-Axis

Create a rectangle shape.

r = antenna.Rectangle;
show(r)
axis equal

5 Methods

5-254

Rotate the rectangle at 45 degrees about the Y-axis.

r1 = rotateY(r,45)

r1 =
 Rectangle with properties:

 Name: 'myrectangle'
 Center: [0 0]
 Length: 1
 Width: 2
 NumPoints: 2

show(r1)
axis equal

 rotateY

5-255

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: rotateY(rectangle) where rectangle is created using antenna.Rectangle object.

angle — Angle of rotation
scalar

Angle of rotation, specified as a scalar in degrees
Example: rotateY(rectangle,45) rotates the rectangle around Y-axis by 45 degrees.
Data Types: double

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateZ | scale | show | subtract |
translate

Introduced in R2017a

5 Methods

5-256

rotateZ
Rotate shape about Z-axis and angle

Syntax
rotateZ(shape,angle)
c = rotateZ(shape,angle)

Description
rotateZ(shape,angle) rotate shape about the Z-axis and angle.

c = rotateZ(shape,angle) rotate shape about the Z-axis and angle.

Examples

Create and Rotate Rectangle Using Specified Properties

Create and view a rectangle with a length of 2 m and a width of 4 m.

r2 = antenna.Rectangle('Length',2,'Width',4);
show(r2)
axis equal

 rotateZ

5-257

Rotate the rectangle.

rotateZ(r2,45);
show(r2)

5 Methods

5-258

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: rotateZ(rectangle) where rectangle is created using antenna.Rectangle object.

angle — Angle of rotation
scalar

Angle of rotation, specified as a scalar in degrees
Example: rotateZ(rectangle,45) rotates the rectangle around Z-axis by 45 degrees.
Data Types: double

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | scale | show | subtract |
translate

Introduced in R2017a

 rotateZ

5-259

translate
Move shape to new location

Syntax
c = translate(shape,locationpoints)

Description
c = translate(shape,locationpoints) moves the shape to a new specified location using a
translation vector.

Examples

Create and Transform Polygon

Create a polygon using antenna.Polygon with vertices at [-1 0 0;-0.5 0.2 0;0 0 0] and
view it.

p = antenna.Polygon('Vertices', [-1 0 0;-0.5 0.2 0;0 0 0])

p =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [3x3 double]

show(p)
axis equal

5 Methods

5-260

Mesh the polygon and view it.

mesh(p,0.2)

 translate

5-261

Move the polygon to a new location on the X-Y plane.

translate(p,[2,1,0])
axis equal

5 Methods

5-262

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = translate(rectangle1,[2 1 0]) where rectangle1 is created using
antenna.Rectangle object.

locationpoints — Translation vector
vector

Translation vector, specified as a vector.
Data Types: double

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract

Introduced in R2017a

 translate

5-263

plot
Plot boundary of shape

Syntax
p = plot(shape,varargin)

Description
p = plot(shape,varargin) plots the boundary of the shape and returns the line handle.

Examples

Plot Rectangle Shape

Create a rectangular shape and plot it.

r = antenna.Rectangle;
p = plot(r);

5 Methods

5-264

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: plot(rectangle) where rectangle is created using antenna.Rectangle object.

See Also
mesh | show

Introduced in R2017a

 plot

5-265

scale
Change the size of the shape by a fixed amount

Syntax
c = scale(shape,scaling)

Description
c = scale(shape,scaling) scales the shape by a constant factor

Examples

Scale Rectangle Shape

Create a rectangular shape.

r = antenna.Rectangle;
show(r)
axis equal

5 Methods

5-266

Shrink the rectangle by 50%.

scale(r,0.5);

Input Arguments
shape — Shape created using custom elements and shape objects
object handle

Shape created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: c = scale(rectangle1,0.5) where rectangle1 is created using antenna.Rectangle
object.

scaling — Constant factor to change shape size
scalar

Constant factor to change shape size, specified as a scalar.
Data Types: double

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | show | subtract

 scale

5-267

Introduced in R2017a

5 Methods

5-268

plus
Shape1 + Shape2

Syntax
c = plus(shape1,shape2)

Description
c = plus(shape1,shape2) calls the syntax shape1 + shape2 to unite two shapes.

Examples

Unite Rectangle and Circle

Create a rectangular and circular shape and unite them.

r = antenna.Rectangle;
c = antenna.Circle;
r+c;

 plus

5-269

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: rectangle1+rectangle2 where rectangle1 and rectangle2 are shapes created using
antenna.Rectangle object.

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract | translate

Introduced in R2017a

5 Methods

5-270

minus
Shape1 - Shape2

Syntax
c = minus(shape1,shape2)

Description
c = minus(shape1,shape2) calls the syntax shape1 - shape2 to subtract two shapes.

Examples

Subtract Rectangle and Circle

Create a rectangular and circular shape and subtract them.

r = antenna.Rectangle;
c = antenna.Circle;
r-c;

 minus

5-271

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: rectangle1-rectangle2 where rectangle1 and rectangle2 are shapes created using
antenna.Rectangle object.

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract | translate

Introduced in R2017a

5 Methods

5-272

and
Shape1 & Shape2

Syntax
c = and(shape1,shape2)

Description
c = and(shape1,shape2) calls the syntax shape1 & shape2 to intersect two shapes.

Examples

Intersect Rectangle and Circle

Create a rectangular and circular shape and intersect them.

r = antenna.Rectangle;
c = antenna.Circle;
r&c;

 and

5-273

Input Arguments
shape1,shape2 — Shapes created using custom elements and shape objects
object handle

Shapes created using custom elements and shape objects of Antenna Toolbox, specified as an object
handle.
Example: rectangle1&rectangle2 where rectangle1 and rectangle2 are shapes created using
antenna.Rectangle object.

See Also
add | area | intersect | mesh | plot | rotate | rotateX | rotateY | rotateZ | scale | show |
subtract | translate

Introduced in R2017a

5 Methods

5-274

add
Add additional data to existing Smith chart

Syntax
add(plot,data)
add(plot,frequency,data)

Description
add(plot,data) adds data to an existing Smith chart.

add(plot,frequency,data) adds data to an existing Smith chart based on multiple data sets
containing frequencies corresponding to columns of data matrix.

Examples

Add S-Parameter Data to an Existing Smith Plot

Plot the reflection coefficients of a dipole antenna.

Create a strip dipole antenna on the Y-Z plane. Calculate the complex s-parameters of the dipole
antenna from 60 MHz to 90 MHz, with an interval of 150 kHz.

Plot S11 on a Smith plot for a reference impedance of 50 ohm.

d = dipole;
freq = linspace(60e6, 90e6, 200);
s_50 = sparameters(d, freq,50);
hg = smithplot(s_50,[1,1]);
hg.LegendLabels = {"S11 at 50#ohm"};

 add

5-275

Find S11 for a new impedance of 75 ohm. Add new S11 to the existing Smith plot.

s_75 = sparameters(d, freq, 75);
gamma = rfparam(s_75,1,1);
add(hg, gamma);
hg.LegendLabels = {"S11 at 50#ohm","S11 at 75#ohm"};

5 Methods

5-276

Input Arguments
plot — Smith chart
function handle

Smith chart handle, specified as a function handle. If the handle of the Smith chart is not retained
during creation, it is obtained by using the command p = smithplot('gco').
Data Types: double

data — Input data
complex vector | complex matrix

Input data, specified as a complex vector or complex matrix.

For a matrix D, the columns of D are independent data sets. For N-by-D arrays, dimensions 2 and
greater are independent data sets.
Data Types: double
Complex Number Support: Yes

frequency — Frequency data
real vector

Frequency data, specified as a real vector.

 add

5-277

Data Types: double

See Also
replace | smithplot

Introduced in R2017b

5 Methods

5-278

replace
Remove current data and add new data to Smith chart

Syntax
replace(plot,data)
replace(plot,frequency,data)

Description
replace(plot,data) removes all current data from a Smith chart, plot, and adds new data to the
Smith chart.

replace(plot,frequency,data) removes all current data and adds new data to the Smith chart
based on multiple data sets containing frequencies corresponding to columns of the data matrix.

Examples

Replace S-Parameter Data on Existing Smith Chart

Plot the reflection coefficients of a dipole antenna.

Create a strip dipole antenna on the Y-Z plane. Calculate the complex S-parameters of the dipole
antenna from 60 MHz to 90 MHz, with an interval of 150 kHz.

Plot S11 on a Smith chart for a reference impedance of 50 ohm.

d = dipole;
freq = linspace(60e6,90e6,200);
s_50 = sparameters(d,freq,50);
hg = smithplot(s_50,[1,1]);
hg.LegendLabels = 'S11 at 50#ohm';

 replace

5-279

Find S11 for a new impedance of 75 ohm. Replace the old S11 by the new S11 on the existing Smith
chart.

s_75 = sparameters(d,freq,75);
gamma = rfparam(s_75,1,1);
replace(hg,gamma);
hg.LegendLabels = 'S11 at 75#ohm';

5 Methods

5-280

Input Arguments
plot — Smith plot
plot handle

Smith chart handle, specified as a plot handle. If the handle of the Smith chart is not retained during
creation, use p = smithplot('gco').

data — Input data
complex vector | complex matrix

Input data, specified as a complex vector or complex matrix.

For a matrix D, the columns of D are independent datasets. For N-by-D arrays, dimensions 2 and
greater are independent datasets.
Data Types: double
Complex Number Support: Yes

frequency — Frequency data
real vector

Frequency data, specified as a real vector.
Data Types: double

 replace

5-281

See Also
add | smithplot

Introduced in R2017b

5 Methods

5-282

smithplot
Plot measurement data on Smith chart

Syntax
smithplot(data)
smithplot(frequency,data)
smithplot(ax, ___)
smithplot(hnet)
smithplot(hnet,i,j)
smithplot(hnet,[i1,j1;i2,j2;....,in,jn])
s = smithplot(___)
s = smithplot('gco')
smithplot(___ ,Name,Value)

Description
smithplot(data) creates a Smith chart based on input data values.

Note The Smith chart is commonly used to display the relationship between a reflection coefficient,
typically given as S11 or S22, and a normalized impedance.

smithplot(frequency,data) creates a Smith chart based on frequency and data values.

smithplot(ax, ___) creates a Smith chart with a user defined axes handle, ax, instead of the
current axes handle. Axes handles are not supported for network parameter objects. This parameter
can be used with either of the two previous syntaxes.

smithplot(hnet) plots all the network parameter objects in hnet.

smithplot(hnet,i,j) plots the (i, j)th parameter of hnet. hnet is a network parameter object.

smithplot(hnet,[i1,j1;i2,j2;....,in,jn]) plots multiple parameters (i1, j1, i2, j2, …, in, jn) of
hnet. hnet is a network parameter object.

s = smithplot(___) returns a Smith chart object handle so you can customize the plot and add
measurements.

s = smithplot('gco') returns a Smith chart object handle of the current plot. This syntax is
useful when the function handle, p was not returned or retained.

smithplot(___ ,Name,Value) creates a Smith chart with additional properties specified by one or
more name-value pair arguments. Name is the property name and Value is the corresponding
property value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values.

For list of properties, see SmithPlot Properties.

 smithplot

5-283

Note The property 'Parent' might be used to control the location where Smith chart gets plotted.

Examples

Plot the Reflection Coefficient of a Dipole Antenna

Smith Plot of the Reflection Coefficient of a Dipole Antenna

Create a strip dipole antenna on the Y-Z plane. Calculate the complex s-parameters of the dipole
antenna from 60 MHz to 90 MHz, with an interval of 150 kHz.

Plot the S11 on a Smith plot.

d = dipole;
freq = linspace(60e6, 90e6, 200);
s = sparameters(d, freq);
hg = smithplot(s,1,1, 'GridType','ZY')

hg =
 smithplot with properties:

 Data: [200x1 double]
 Frequency: [200x1 double]

 Show all properties, methods

hg.LineStyle = '--';

5 Methods

5-284

Smith Plot Interactive Menu

Use the Smith plot interactive menu for changing line and marker styles.

Plot the Smith plot of s-parameters of dipole d.

smithplot(s)

Right click on the S11 line to reveal interactive menu, DATASET 1. Use Line style and Properties to
change the line style and width of S11 line on the Smith plot.

 smithplot

5-285

You can see the changes you made on the Smith plot.

5 Methods

5-286

Input Arguments
data — Input data
complex vector | complex matrix

Input data, specified as a complex vector or complex matrix.

For a matrix D, the columns of D are independent data sets. For N-by-D arrays, dimensions 2 and
greater are independent data sets.
Data Types: double
Complex Number Support: Yes

frequency — Frequency data
real vector

Frequency data, specified as a real vector.
Data Types: double

hnet — Input objects
Antenna Toolbox network parameter object

Input objects, specified as a network parameter object.
Data Types: double

 smithplot

5-287

Output Arguments
s — Smith chart object handle
object

Smith chart object handle. You can use the handle to customize the plot and add measurements using
MATLAB commands.

Tips
• To list all the property Name,Value pairs in smithplot, use details(s). You can use the

properties to extract any data from the Smith chart. For example, s =
smithplot(data,'GridType','Z') displays the impedance data grid from the Smith chart.

• For a list of properties of smithplot, see SmithPlot Properties (RF Toolbox).
• You can use the smithplot interactive menu to change the line and marker styles.

See Also
add | replace

Introduced in R2017b

5 Methods

5-288

phaseShift
Calculate phase shift values for arrays or multi-feed PCB stack

Syntax
ps = phaseShift(array,frequency,angle)
ps = phaseShift(pcb,frequency,angle)

Description
ps = phaseShift(array,frequency,angle) calculates the phase shift values of an array
operating at a specified frequency to scan the beam at the given angle. The velocity of light is
assumed to be that in free space.

ps = phaseShift(pcb,frequency,angle) calculates the phase shift values of a multi-feed PCB
stack at a specified frequency and angle.

Examples

Scan Main Beam of 3-by-3 Rectangular Array of Reflector-Backed Dipoles

Create a 3-by-3 rectangular array of reflector-backed dipoles at an operating frequency of 1.8 GHz,
and scan the main beam at 30 degrees along the azimuth and 45 degrees along the elevation.

a = design(rectangularArray('Size',[3 3]),1.8e9,reflector);
ps = phaseShift(a,1.8e9,[30;45])

ps = 9×1

 350.5337
 54.1733
 117.8129
 240.3066
 303.9462
 7.5858
 130.0796
 193.7192
 257.3588

a.PhaseShift = ps

a =
 rectangularArray with properties:

 Element: [1x1 reflector]
 Size: [3 3]
 RowSpacing: 0.0833
 ColumnSpacing: 0.0833
 Lattice: 'Rectangular'
 AmplitudeTaper: 1

 phaseShift

5-289

 PhaseShift: [9x1 double]
 Tilt: 0
 TiltAxis: [1 0 0]

Calculate the radiation pattern of the array.

pattern(a,1.8e9)

Input Arguments
array — Antenna array
array object

Antenna array from the Antenna Toolbox array library, specified as an array object.
Example: r = rectangularArray; phaseShift (r,70e6,[60;40]). Calculates the phase shift
of the rectangular array.

pcb — Multi-feed PCB stack
pcbStack object

Multi-feed PCB stack, specified as a pcbStack object.
Example: fco = invertedFcoplanar; pcb = pcbStack(fco); phaseShift (pcb,70e6,
[60;40]) Calculates the phase shift of the coplanar inverted F antenna PCB.

5 Methods

5-290

frequency — Frequency value to calculate phase shift
scalar

Frequency value used to calculate the phase shift, specified as a scalar in Hz.
Example: 70e6
Data Types: double

angle — Azimuth and elevation angle pair
2-element vector

Azimuth and elevation angle pair to scan the array toward, specified as a 2-element vector in degrees.
Example: [35;40]
Data Types: double

Output Arguments
ps — Phase shift values
1-by-N vector

Phase shift values, returned as a 1-by-N vector in degrees. Phase shift value calculation does not
consider mutual coupling.

See Also
feedCurrent | pattern | patternMultiply

Introduced in R2018b

 phaseShift

5-291

patternFromSlices
Reconstruct approximate 3-D radiation pattern from two orthogonal slices

Syntax
patternFromSlices(vertislice,theta,horizslice,phi)
patternFromSlices(vertislice,theta,horizslice)
patternFromSlices(vertislice,theta)
[pat3D,thetaout,phiout] = patternFromSlices(___)
[___] = patternFromSlices(___ ,Name,Value)

Description
patternFromSlices(vertislice,theta,horizslice,phi) plots the approximate 3-D pattern
reconstructed from the input data containing the 2-D pattern along the vertical and horizontal plane
as well as the polar and azimuthal angles in the spherical coordinates.

patternFromSlices(vertislice,theta,horizslice) plots the approximate 3-D pattern with
the horizontal slice provided as a real-valued scalar. The syntax assumes that the antenna is
omnidirectional with symmetry about the Z-axis.

patternFromSlices(vertislice,theta) plots the approximate 3-D pattern reconstructed from
only vertical pattern data, along with the assumption of azimuthal omni directionality and that
horizontal pattern data is equal to maximum value of vertical pattern data.

[pat3D,thetaout,phiout] = patternFromSlices(___) returns the reconstructed pattern as
a matrix with the vectors of phi and theta.

[___] = patternFromSlices(___ ,Name,Value) provides a way to specify customization and
tuning options to the pattern reconstruction method.

Examples

Reconstruct Pattern of Dipole Antenna from 2-D Slices

Load the MAT file containing the data of the dipole pattern.

load dipoleAntennaSlices.mat

Reconstruct the pattern from the data provided using the CrossWeighted method.

patternFromSlices(vertSlice,theta,horizSlice,phi,'Method','CrossWeighted')

5 Methods

5-292

Reconstruct Pattern of Sector Antenna from 2-D Slices

Load the MAT file containing the data of the sector antenna pattern.

load sectorAntennaSlices.mat

Reconstruct the pattern from the data provided using the Summing method.

 patternFromSlices(vertSlice,theta,horizSlice,phi,'Method','Summing')

 patternFromSlices

5-293

 [pat3D,thetaout,phiout] = patternFromSlices(vertSlice,theta,horizSlice,phi,'Method','Summing');
 pat3D = pat3D(1:5)

pat3D = 1×5

 -23.2025 -23.2071 -23.2224 -23.2485 -23.2854

 thetaout = thetaout(1:5)

thetaout = 1×5

 180 179 178 177 176

 phiout = phiout(1:5)

phiout = 1×5

 -180 -179 -178 -177 -176

5 Methods

5-294

Input Arguments
Required Input Arguments

vertislice — 2-D pattern slice data along vertical or elevation plane
real-valued vector

2-D pattern slice data along the vertical or the elevation plane, specified as a real-valued vector with
each element unit in dBi. This parameter need not be normalized. The numel(vertislice) must be
equal to numel(theta).
Data Types: double

theta — Polar or inclination angles in spherical coordinates
real-valued vector

Polar or inclination angles in spherical coordinates, specified as a real-valued vector with each
element unit in degrees.

Note

θ = 90− el

el is the elevation angle.

Example: 70e6
Data Types: double

Optional Input Arguments

horizslice — 2-D pattern slice data along horizontal or azimuthal plane
real-valued scalar | real-valued vector

2-D pattern slice data along the horizontal or the azimuthal plane, specified as a real-valued scalar in
dBi, or a real-valued vector with each element unit in dBi.

• If the value is a vector, then numel(horizslice) must be equal to numel(phi).
• If the value is a scalar, then the antenna is omnidirectional if the scalar value is used for all angles

in the azimuthal plane.
• If no value is provided, then the antenna is omnidirectional and the default value (for the entire

azimuthal slice) is set equal to the maximum directivity or gain of the elevation slice.

Data Types: double

phi — Azimuthal angles in spherical coordinates
real-valued vector

Azimuthal angles in the spherical coordinates, specified as a real-valued vector with each element
unit in degrees. If this argument is not provided:

• The antenna is assumed omnidirectional with symmetry about the Z-axis or azimuthal symmetry.
• The default values used are: phi = 0:5:360.

 patternFromSlices

5-295

Example: 70e6
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'Method', 'Summing'

Method — Approximate interpolation algorithm to perform reconstruction
'Summing' (default) | 'CrossWeighted'

Approximate interpolation algorithm to perform reconstruction, specified as the comma-separated
pair consisting of 'Method' and 'Summing', or 'CrossWeighted'.
Example: 'Method', 'CrossWeighted'
Data Types: char

CrossWeightedNormalization — Normalization parameter for cross-weighted summing
method
2 | real-valued positive scalar

Normalization parameter for cross-weighted summing method, specified as a comma-separated pair
consisting of 'CrossWeightedNormalization' and a real-valued positive scalar. As this parameter
increases, the pattern reconstruction becomes a pessimistic approximation of the estimated
directivity or gain. As this parameter decreases, the pattern reconstruction becomes an optimistic
approximation of the estimated directivity or gain.
Example: 'CrossWeightedNormalization',2
Data Types: double

Output Arguments
pat3D — Matrix of reconstructed 3-D pattern
N-by-M real-valued array

Matrix of reconstructed 3-D pattern, returned as an N-by-M real-valued array. The number of rows in
the matrix corresponds to the number of phi elements in dBi. The number of columns in the matrix
corresponds to the number of theta elements in dBi.

thetaout — Polar inclination angle
M-element real-valued vector

Polar inclination angle, returned as an M-element real-valued vector in degrees. The returned value is
for the subset of input data for the chosen reconstructed method.

phiout — Azimuthal angle
N-element real-valued vector

Azimuthal angle, returned as an N-element real-valued vector in degrees. The returned value is for
the subset of input data for the chosen reconstructed method.

5 Methods

5-296

More About
Summing

The summing approximation or interpolation algorithm performs:G(ϕ, θ) = GH(ϕ) + GV(θ)where,
GH(Փ) and GV(θ) are the normalized 2-D pattern cut data in dBi.

Cross-Weighted

GH(ϕ, θ) =
GH(ϕ) • w1 + GV(θ) . w2

w1
k + w2

kk

where,

• w1(ϕ, θ) = vert(θ) • [1− hor(φ)]
w2(ϕ, θ) = hor(φ) • [1− vert(θ)]

• GH(Փ) and GV(θ) are normalized 2-D pattern cut data in dBi.
• hor(Փ) and vert(θ) are normalized in linear units.
• k is a normalization parameter.

References
[1] Makarov, Sergey N. Antenna and Em Modeling in MATLAB. Chapter3, Sec 3.4 3.8. Wiley Inter-

Science.

[2] Balanis, C.A. Antenna Theory, Analysis and Design, Chapter 2, sec 2.3-2.6, Wiley.

See Also
pattern | patternAzimuth | patternCustom | patternElevation

Introduced in R2019a

 patternFromSlices

5-297

PatternPlotOptions
Creates option list to customize 3-D radiation pattern for pattern overlay option

Syntax
patternplot = PatternPlotOptions
patternplot = PatternPlotOptions(Name,Value)

Description
patternplot = PatternPlotOptions creates an option list for a 3-D radiation pattern for pattern
overlay option.

patternplot = PatternPlotOptions(Name,Value) returns a pattern plot option list based on
the specified properties. Properties not specified retain their default values.

Examples

Radiation Pattern of Helix Antenna

Plot the radiation pattern of a helix antenna with transparency specified as 0.5.

p = PatternPlotOptions

p =
 PatternPlotOptions with properties:

 Transparency: 1
 SizeRatio: 0.9000
 MagnitudeScale: []
 AntennaOffset: [0 0 0]

p.Transparency = 0.5;
ant = helix;
pattern(ant,2e9,'patternOptions',p)

5 Methods

5-298

To understand the effect of Transparency, chose Overlay Antenna in the radiation pattern plot.

This option overlays the helix antenna on the radiation pattern.

 PatternPlotOptions

5-299

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'Transparency', 0.1

Transparency — Transparency of 3-D radiation pattern
0.8000 (default) | scalar

Transparency of the 3-D radiation pattern, specified as the comma-separated pair consisting of
'Transparency' and a scalar value between 0 and 1.
Example: 'Transparency', 0.5
Example: patternplot.Transparency = 0.5
Data Types: double

SizeRatio — Relative size of antenna to radiation pattern
0.9000 (default) | positive scalar

5 Methods

5-300

Relative size of the antenna to the radiation pattern, specified as the comma-separated pair of
'SizeRatio' and a positive scalar.
Example: 'SizeRatio', 1
Example: patternplot.SizeRatio = 1
Data Types: double

AntennaOffset — Position of antenna with pattern center as origin
[0 0 0] (default) | three-element vector

Position of the antenna with the pattern center as the origin, specified as the comma-separated pair
consisting of 'AntennaOffset' and a three-element vector of [x, y, z] coordinates.
Example: 'AntennaOffset', [1,0,0]
Example: patternplot.AntennaOffset = [1,0,0]
Data Types: double

MagnitudeScale — Scale of radiation pattern
two-element vector

Scale of the radiation pattern, specified as the comma-separated pair consisting of
'MagnitudeScale' and a two-element vector of minimum magnitude and maximum magnitude. If
this property is empty, the radiation pattern plot is of the full range magnitude.
Example: 'MagnitudeScale', [1,0]
Example: patternplot.MagnitudeScale = [1,0]
Data Types: double

See Also
pattern | patternAzimuth | patternCustom | patternElevation

Introduced in R2019a

 PatternPlotOptions

5-301

stlwrite
Write mesh to STL file

Syntax
stlwrite(objname,filename)

Description
stlwrite(objname,filename) writes the triangles in the mesh for an antenna or array object to
an STL file in text format using the specified file name.

Examples

Platform from STL of Waveguide Antenna

Create a waveguide antenna for operation at 8 GHz and compute the impedance.

w = design(waveguide,8e9);
Z = impedance(w,8e9);

Create an STL file for the above antenna.

stlwrite(w,'waveguide_8GHz.stl')

You will see the waveguide_8GHz.stl file in your current folder.

Load waveduide_8GHz.stl and visualize the platform.

plat = platform('FileName','waveguide_8GHz.stl','Units','m')

plat =
 platform with properties:

 FileName: 'waveguide_8GHz.stl'
 Units: 'm'
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

show(plat)

5 Methods

5-302

Input Arguments
objname — Antenna or array object
antenna or array handle

Antenna or array object, specified as an antenna or array handle.

filename — Name of STL file
character vector

Name of STL file, specified as a character vector in STL format.

See Also
meshconfig | platform | show

Introduced in R2019a

 stlwrite

5-303

rcs
Calculate and plot radar cross section (RCS) of platform, antenna, or array

Syntax
rcs(object,frequency)
rcs(object,frequency,azimuth,elevation)
rcs(___ ,Name,Value)

[rcsval,azimuth,elevation] = rcs(object,frequency)
[rcsval,azimuth,elevation] = rcs(___ ,Name,Value)

Description
rcs(object,frequency) plots the monostatic RCS of the platform, antenna, or array object over a
specified frequency. To learn more about RCS, see “What Is RCS?” on page 5-315.

rcs(object,frequency,azimuth,elevation) plots the monostatic RCS for the specified
azimuth and elevation angles.

rcs(___ ,Name,Value) plots the RCS with additional properties specified using one or more Name,
Value pair arguments. This parameter can be used with any of the input arguments from the previous
syntaxes.

[rcsval,azimuth,elevation] = rcs(object,frequency) returns the RCS value of a
platform, antenna, or array object at the specified frequency. azimuth and elevation are vectors
over which the RCS value is calculated.

[rcsval,azimuth,elevation] = rcs(___ ,Name,Value) returns the RCS value with
additional properties specified using one or more Name, Value pair arguments. This parameter can be
used with any of the input arguments from the previous syntaxes.

Examples

RCS of Helix

Create a default helix antenna and plot the RCS at 2 GHz.

ant = helix;
rcs(ant,2e9)

5 Methods

5-304

RCS of Linear Array

Create a default linear array and plot the RCS at 75 MHz in the elevation pane.

array = linearArray;
rcs(array,75e6,0,0:1:360)

 rcs

5-305

RCS of Reflector-Backed Dipole

Create a reflector-backed dipole and plot the RCS at 1 GHz in the elevation plane at 90 degree
azimuth.

ant = reflector;
rcs(ant,1e9,90,0:1:360)

5 Methods

5-306

RCS of Tetrahedron Platform

Create a tetrahedron platform from an STL file.

p = platform;
p.FileName = 'tetrahedra.stl';
p.Units = 'm';
figure
show(p)

 rcs

5-307

Mesh the platform with edge length of 0.1

figure
mesh(p,'MaxEdgeLength',0.1)

5 Methods

5-308

Sweep over the elevation with a vertically polarized E-field. Plot the RCS at 700 MHz in the azimuth
plane.

az = 0:1:360;
el = 0;
figure
rcs(p,700e6,az,el)

 rcs

5-309

RCS of Corner Reflector

Create a corner reflector-bakced antenna.

f = 2e9;
c = design(reflectorCorner,750e6);

Plot the RCS in the elevation plane.

figure
rcs(c,f,0,0:2:360)

5 Methods

5-310

Plot the RCS in the azimuth plane.

figure
rcs(c,f,0:2:360,0)

 rcs

5-311

Input Arguments
object — Platform, antenna, or array element
object

Platform, antenna or array element, specified as an object.

frequency — Analysis frequency
real-valued scalar

Analysis frequency, specified as a real-valued scalar in Hz.
Example: 70e6
Data Types: double

azimuth — Azimuth angles
0 (default) | N-element real vector

Azimuth angles at which to visualize the RCS, specified as an N-element real vector in degrees.
Example: 90
Data Types: double

elevation — Elevation angles
0:5:360 (default) | M-element real vector

5 Methods

5-312

Elevation angles at which to visualize the RCS, specified as an M-element real vector in degrees.
Example: 0:1:360
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value pair arguments. Name is the argument name
and Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'CoordinateSystem','polar'

CoordinateSystem — Coordinate system in which to visualize RCS
'polar' (default) | 'rectangular'

Coordinate system in which to visualize the RCS, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of these values: 'polar' or 'rectangular'.
Example: 'CoordinateSystem','rectangular'
Data Types: char

Scale — Scale at which to visualize or compute RCS
'log' (default) | 'linear'

Scale at which to visualize or compute the RCS, specified as the comma-separated pair consisting of
'Scale' and 'log' or 'linear'. When you choose 'log', the RCS is calculated and plotted in
dBsm.
Example: 'Scale','linear'
Data Types: char

Polarization — Transmit and receive wave polarization
'VV' (default) | 'HH' | 'HV' | 'VH'

Transmit and receive wave polarization, specified as the comma-separated pair consisting of
'Polarization' and one of these values:

• 'HH' – Horizontal polarized field is transmitted and received.
• 'VV' – Vertical polarized field is transmitted and received.
• 'VH' – Vertical polarized field is transmitted, and horizontal polarized field is received.
• 'HV' – Horizontal polarized field is transmitted, and vertical polarized field is received.

Example: 'Polarization','VV'
Data Types: char

EnableGPU — Use GPU to perform RCS calculations
0 (default) | 1

Use GPU to perform RCS calculations, specified as the comma-separated pair consisting of
'EnableGPU' and 0 to disable GPU or 1 to enable GPU.
Example: 'EnableGPU',1
Data Types: logical

 rcs

5-313

TransmitDirection — Transmit wave direction
2-by-N real matrix

Transmit wave direction, specified as the comma-separated pair consisting of
'TransmitDirection' and a 2-by-N real matrix representing azimuth and elevation pairs, with
each element unit in degrees.
Example: 'TransmitDirection',[30;60]
Data Types: double

ReceiveDirection — Receive wave direction
2-by-M real matrix

Receive wave direction, specified as the comma-separated pair consisting of 'ReceiveDirection'
and a 2-by-M real matrix representing azimuth and elevation pairs, with each element unit in
degrees.
Example: 'ReceiveDirection',[30;60]
Data Types: double

Solver — Solver for RCS analysis
'PO' (default) | 'MOM'

Solver for RCS analysis, specified as the comma-separated pair consisting of 'Solver' and 'PO'
(physical optics) or 'MOM' (method of moments).
Example: 'Solver', 'MOM'
Data Types: char

Type — Output type
'Magnitude' (default) | 'Complex'

Output type, specified as the comma-separated pair consisting of 'Type' and 'Magnitude' or
'Complex'.

Note Plotting rcs will error if the 'Type' is 'Complex'

Example: 'Type', 'Complex'
Data Types: char

Output Arguments
rcsval — RCS value of platform, antenna, or array object
N-by-M real-valued array

RCS value of the platform, antenna, or array object, returned as an N-by-M real-valued array in
dBsm. The size of the array is equal to the number of azimuth values (N) multiplied by the number of
elevation values (M).

azimuth — Azimuth angles of calculated RCS pattern
N-element real-valued vector

5 Methods

5-314

Azimuth angles of the calculated RCS value, returned as an N-element real-valued vector in degrees.

elevation — Elevation angles of calculated RCS pattern
M-element real-valued vector

Elevation angles of the calculated RCS pattern, returned as an M-element real-valued vector in
degrees.

More About
What Is RCS?

Radar Cross Section (RCS) is the measure of scattering cross section of an object interrogated by a
plane wave. The assumption of a plane wave implies that the structure is in the far field of the
radiator, which is typically a part of the radar system. RCS is a function of the object's shape, the
frequency of the radar, the angle of interrogation of the wave, and the object's material parameters.
RCS can also be measured in logarithmic units of dBsm, which is dB relative to a 1 m2 reference area.

RCS is calculated using two typical configurations:

• Monostatic
• Bistatic

By default, the rcs function calculates a monostatic RCS. To calculate a bistatic RCS, restrict the
'TransmitDirection' to 2-by-1.

Monostatic RCS

The monostatic RCS configuration is characterized by a radar system that transmits a signal and
receives the backscattered signal from the object being interrogated at the same site. The source of
the transmitted electromagnetic waves and the receiving system for the scattered wave are
colocated.

Bistatic RCS

In the bistatic RCS configuration, the radar system consists of a fixed radar transmitting site and a
fixed or mobile receiving site captures the backscattered waveform from the object.

 rcs

5-315

RCS Calculation

RCS is calculated in both a scalar form and a matrix form. Equations for both forms include electric
(E) and magnetic (H) field quantities calculated or measured in the far field of the scattering object.

Scalar Form

In the scalar form of RCS, σ is defined as a ratio of the squared backscattered-field to the squared
incident field, given by the equation:

σ = lim
r ∞

4πr2 Es 2

Ei 2

where Es and Ei represent the scattered and incident electric fields at a specific point in 3-D space.

Matrix Form

The matrix form of the RCS decomposes the incident and the scattered fields into horizontal and
vertical polarizations and then computes the ratios of the various combinations between the scattered
and incident fields, given by the equation:

σHH σHV
σVH σVV

= lim
r ∞

4πr2

EH
s 2

EH
i 2

EH
s 2

EV
i 2

EV
s 2

EH
i 2

EV
s 2

EV
i 2

where Es
H and Ei

H represent the horizontal polarized components of the scattered and incident
electric fields at a given point in 3-D space. Es

V and Ei
V represent the vertical polarized components of

the scattered and incident electric fields at a given point in 3-D space.

References
[1] Gurel, L., H. Bagrci, J. C. Castelli, A. Cheraly, F. Tardivel. "Validation Through Comparison:

Measurement and Calculation of the Bistatic Radar Cross Section of a Stealth Target." Radio
Science. Vol. 38, Number 3, 2003, pp.12-1 - 12-8.

[2] Rao, S.M., D. R. Wilton, A. W. Glisson. "Electromagnetic Scattering by Surfaces of Arbitrary
Shape." IEEE Trans. Antennas and Propagation. Vol. AP-30, Number 3, 1982, pp.409-418.

5 Methods

5-316

[3] Jakobus, U., F. M. Landstorfer. "Improved PO-MM Formulation for Scattering from Three-
Dimensional Perfectly Conducting Bodies of Arbitrary Shape.." IEEE Trans. Antennas and
Propagation. Vol. AP-43, Number 2, 1995, pp.162-169.

See Also
patternAzimuth | patternElevation

Introduced in R2019b

 rcs

5-317

rectspirallength2turns
Calculate number of turns for specified arm length in rectangular spiral antenna

Syntax
Nturns = rectspirallength2turns(ant,reqtotalarmlength)

Description
Nturns = rectspirallength2turns(ant,reqtotalarmlength) calculates the equivalent
number of turns for a specified total arm length in a rectangular spiral antenna.

Examples

Rectangular Spiral Antenna with Specified Arm Length

Create a single arm rectangular spiral antenna with a total arm length of 291 mm.

ant = spiralRectangular('NumArms',1,'NumTurns',3,'InitialLength',4.5e-3,...
 'InitialWidth',4.5e-3,'Spacing',3.3e-3,'StripWidth',1.2e-3);
nT = rectspirallength2turns(ant,291e-3);
ant.NumTurns = nT;
figure;
show(ant);

5 Methods

5-318

Input Arguments
ant — Rectangular spiral antenna
spiralRectangular object

Rectangular spiral antenna, specified as a spiralRectangular object.

reqtotalarmlength — Total length of arm
scalar in meters

Total length of the rectangular spiral antenna arm, specified as a scalar in meters. In case of dual
arm, the input takes the length of any one of the arms.
Example: 33e-3

Output Arguments
Nturns — Equivalent number of turns
scalar

Equivalent number of turns for a specified total arm length, returned as a scalar.

See Also
spiralRectangular

 rectspirallength2turns

5-319

Introduced in R2020a

5 Methods

5-320

createFeed
Create feed location for customAntennaStl object

Syntax
createFeed(antenna,FeedLocation,NumEdges)
createFeed(antenna)

Description

createFeed(antenna,FeedLocation,NumEdges) creates antenna feed for a
customAntennaStlobject using the feed location defined in FeedLocationand the number of

 createFeed

5-321

edges specified in NumEdges. The antenna feed is created along the triangular edges defined in
FeedLocation.

createFeed(antenna) opens a UI figure window from which you can interactively create the
antenna feed for a customAntennaStlobject. The figure window has two panes: Slice Antenna and
Add Feed .

Examples

Create Feed for customAntennaStl Object

Create antenna feed for a customAntennaStl object using the command-line interface. First create
a customAntennaStl object with default properties.

ant = customAntennaStl

ant =
 customAntennaStl with properties:

 FileName: []
 Units: 'm'
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Specify the file name of the STL file to determine the antenna structure.

ant.FileName ='plateMesh.stl'

ant =
 customAntennaStl with properties:

 FileName: 'plateMesh.stl'
 Units: 'm'
 FeedLocation: []
 AmplitudeTaper: 1
 PhaseShift: 0
 UseFileAsMesh: 0
 Tilt: 0
 TiltAxis: [1 0 0]

Specify FeedLocation and NumEdges and display the antenna structure.

ant.createFeed([0,0,0], 1)
show (ant)

5 Methods

5-322

Create Feed Using UI Figure Window

Create a customAntennaStl object with default properties.

ant= customAntennaStl;

Import the STL file.

ant.FileName = 'plateMesh.stl';

Open the UI figure window.

createFeed(ant);

 createFeed

5-323

The UI figure window consists of two panes, Slice Antenna and the Add Feed pane. Select the
Slicer Mode, then click YZ to select that as the plane along which to slice your antenna.

5 Methods

5-324

Select the region you want to hide and then click Hide to hide the selected region.

 createFeed

5-325

Repeat the process until you reach the region of interest.

Select Select a Feeding Edge or Polygon under the Add Feed pane to select the edges to form a
closed polygon. Click OK to define the selected edges as the feeding edges.

5 Methods

5-326

The feed location is displayed.

 createFeed

5-327

The selected edges must be connected to other edges, else UI figure window will display an error.

Input Arguments
antenna — Custom antenna
customAntennaStl object

Custom antenna stl object, specified as object.

NumEdges — Number of feeding edges
positive real scalar

Number of feeding edges, specified as a positive real scalar. You can also select the feeding edges
using the UI figure window.

FeedLocation — Points to identify feed region
[] (default) | three-element vector

Points to identify antenna feed location, specified as Cartesian coordinates in meters. The three
elements of the vector are the X-, Y-, and Z-coordinates, respectively.
Example: createFeed(c,[0.07,0.01,0.02],1);

See Also
customAntennaStl | returnLoss | sparameters

5 Methods

5-328

Introduced in R2020a

 createFeed

5-329

strip2cylinder
Calculates equivalent radius approximation for strip

Syntax
r = strip2cylinder(w)

Description
r = strip2cylinder(w) calculates the equivalent radius for a cylindrical approximation to a strip
cross section.

Examples

Radius Approximation of Cylinder from Strip Width

Calculate the equivalent radius of a cylinder based on a strip of width 80 mm.

r1 = strip2cylinder(80e-3)

r1 = 0.0200

Calculate the equivalent cylindrical cross-sections radii using the strips of widths 80 mm, 88 mm, and
96 mm.

r2 = strip2cylinder([80e-3 88e-3 96e-3])

r2 = 1×3

 0.0200 0.0220 0.0240

Input Arguments
w — Width of strip
scalar | vector

Width of strip, specified as a scalar in meters or a vector with each element unit in meters.

Output Arguments
r — Equivalent cylindrical cross-section radius
scalar | vector

Equivalent cylindrical cross-section radius, returned as a scalar in meters or a vector with each
element unit in meters.
Example: 20e-3

5 Methods

5-330

See Also
cylinder2strip

Introduced in R2020a

 strip2cylinder

5-331

numGridsToSpacing
Calculate grid spacing in grid for reflectorGrid object

Syntax
numGridsToSpacing(antenna,numGrids,GridWidth)

Description
numGridsToSpacing(antenna,numGrids,GridWidth) calculates the spacing between cells in
the grid given the number of grid cells, numGrids, and the width of the grid cells, GridWidth.

Examples

Calculate Grid Spacing in Grid Reflector-Backed Antenna

Calculate the spacing between grid cells in the reflectorGrid antenna object with given number of
grid cells as 4 and the grid width of 0.026 m.

ant = reflectorGrid;
numGridsToSpacing(ant,4,0.026)

ans = 0.0240

Input Arguments
antenna — Grid reflector-backed antenna
reflectorGrid object

Grid reflector-backed antenna, specified as a reflectorGrid object.

numGrids — Number of grid cells
positive scalar

Number of grid cells in the reflector, specified as a positive scalar.

GridWidth — Width of grid cells
0.022 (default) | positive scalar

Width of each grid cell of the grid reflector-backed antenna, specified as a positive scalar in meters.
Example: numGridsToSpacing(ant,4,0.3);

See Also
reflectorGrid

Introduced in R2020b

5 Methods

5-332

optimize
Optimize antenna or array using SADEA optimizer

Syntax
optimizedelement = optimize(element,frequency,objectivefunction,
propertynames,bounds)
optimizedelement = optimize(___ ,Name,Value)

Description
optimizedelement = optimize(element,frequency,objectivefunction,
propertynames,bounds) optimizes the antenna or the array at the specified frequency using the
specified objective function and the antenna or array properties and their bounds.

optimizedelement = optimize(___ ,Name,Value) optimizes the antenna or the array using
additional name value pairs.

Examples

Maximize Gain of Dipole Antenna

Create and view a default dipole antenna.

ant = dipole;
show(ant)

 optimize

5-333

Maximize the gain of the antenna by changing the antenna length from 3 m to 7 m and the width
from 0.11 m to 0.13 m.

Optimize the antenna at a frequency of 75 MHz.

optAnt = optimize(ant, 75e6, 'maximizeGain', ...
 {'Length', 'Width'}, {3 0.11; 7 0.13})

5 Methods

5-334

optAnt =
 dipole with properties:

 Length: 4.8088
 Width: 0.1102
 FeedOffset: 0
 Tilt: 0
 TiltAxis: [1 0 0]
 Load: [1x1 lumpedElement]

show(optAnt)

 optimize

5-335

Input Arguments
element — Antenna or array element
object

Antenna or array element, specified as an antenna object from the “Antenna Catalog” or array object
from the “Array Catalog”.

frequency — Frequency of antenna or array analysis during optimization
nonnegative scalar

Frequency of the antenna or array analysis during optimization, specified as a nonnegative scalar in
hertz.
Data Types: double

objectivefunction — Objective of antenna or array optimization
'maximizeGain' | 'fronttoBackLobeRatio' | 'maximizeBandwidth' |
'minimizeBandwidth' | 'maximizeSLL' | 'minimizeArea'

Objective of antenna or array optimization, specified as one of the following:

• 'maximizeGain' — Maximize the gain of the given antenna or array element
• 'fronttoBackRatio' — Increase the front-lobe-to-back-lobe ratio of the antenna or array

element

5 Methods

5-336

• 'maximizeBandwidth' — Maximize the operation bandwidth of the antenna or array element.
Use this objective function for optimizing antennas or arrays for wideband applications.

• 'minimizeBandwidth' — Minimize the operation bandwidth of the antenna or array element.
Use this objective function for optimizing antennas or arrays for narrowband applications.

• 'maximizeSLL' — Maximize the ratio between the front lobe and the first side lobes of the
antenna or array pattern.

• 'minimizeArea' — Minimizes the maximum area occupied by the antenna or the array element.
If the dimension of the element in the array is smaller than the aperture, the objective function
minimizes the array aperture.

Data Types: string | char

propertynames — Properties of optimizing antenna or array
cell array character vectors

Properties of optimizing antenna or array, specified as a cell array of character vectors. The property
names are selected as the design variables in optimization.
Data Types: cell

bounds — Lower and upper bounds of design variables
two-row cell array

Lower and upper bounds of design variables, specified as a two-row cell array.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: optAnt = optimize(ant, 75e6, 'maximizeGain',{'Length', 'Width'}, {3
0.11; 7 0.13})

Constraints — Optimization constraints
cell array of strings or character vectors

Antenna or array optimization constraints, specified as the comma-separated pair consisting of
'Constraints' and a cell array of strings or character vectors. Each character vector or string
must be of the form: (analysis function) (inequality sign) (value). You can specify any of the following
analysis functions:

• 'Area' in meter square
• 'Volume' in meter cube
• 'S11' in dB
• 'Gain' in dBi
• 'F/B' in dBi
• 'SLL' in dBi

The inequality signs '<' or '>' and the values specifies the analysis function limits. For example,
Area < 0.03 indicates that the area of the optimizing antenna must be lesser than 0.03 square
meter.

 optimize

5-337

Example: 'Constraints',{Area<0.03}
Data Types: char | string

Weights — Weight or penalty of each constraint function
vector of positive integers in the range (1,100)

Weight or penalty of each constraint function, specified as the comma-separated pair consisting of
'Weights' and a vector of positive integers in the range (1,100). If the penalty is set to high, a
higher priority is given to the constraint function in case of multiple constraint optimization. All
constraint functions are weighted equally by default.
Example: 'Weights',8
Data Types: double

FrequencyRange — Range of frequencies for vector frequency analysis
vector of nonnegative numbers

Range of frequencies for vector frequency analysis like S-parameters, specified as the comma-
separated pair consisting of 'FrequencyRange' and a vector of nonnegative numbers with each
element unit in hertz.

The default frequency range is obtained from the center frequency considering a bandwidth of less
than 10 percent.
Example: 'FrequencyRange',linspace(1e9,2e9,10)
Data Types: double

ReferenceImpedance — Reference impedance of optimizing antenna or array
50 (default) | scalar

Reference impedance of antenna or array being optimized, specified as the comma-separated pair
consisting of 'ReferenceImpedance' and a scalar in ohms
Example: 'ReferenceImpedance',50
Data Types: double

MainLobeDirection — Azimuth and elevation of main lobe
[0,90] (default) | two-element vector

Azimuth and elevation of main lobe of antenna or array being optimized, specified as the comma-
separated pair consisting of 'MainLobeDirection' and a two-element vector with each element
unit in degrees. The first element represents azimuth and the second element represents elevation.
Example: 'MainLobeDirection',[20 30]
Data Types: double

Iterations — Number of iterations to run optimizer
200 (default) | positive scalar

Number of iterations to run the optimizer after you build the model, specified as the comma-
separated pair consisting of 'Iterations' and a positive scalar.
Example: 'Iterations',40
Data Types: double

5 Methods

5-338

UseParallel — Use Parallel Computing Toolbox during optimization
false (default) | true

Use Parallel Computing Toolbox during optimization, specified as the comma-separated pair
consisting of 'UseParallel' and true or false.
Example: 'UseParallel',true
Data Types: logical

EnableCoupling — Enable mutual coupling of elements in arrays during optimization
true (default) | false

Enable mutual coupling of elements in an array during optimization, specified as the comma-
separated pair consisting of 'EnableCoupling' and true or false.
Example: 'EnableCoupling',false
Data Types: logical

EnableLog — Enable printing iteration number and value of convergence on command line
false (default) | true

Enable printing iteration number and value of convergence on the command line, specified as the
comma-separated pair consisting of 'EnableLog' and true or false.
Example: 'EnableLog',true
Data Types: logical

Output Arguments
optimizedelement — Optimized antenna or array element
antenna or array object

Optimized antenna or array element, returned as an antenna or array object.

See Also

Introduced in R2020b

 optimize

5-339

numCorrugationsToPitch
Calculate pitch for specified corrugations

Syntax
Pitch = numCorrugationsToPitch(antenna,corrugations)

Description
Pitch = numCorrugationsToPitch(antenna,corrugations) returns the pitch value for the
specified number of corrugations. You can calculate the pitch for rectangular or conical corrugated
horn antennas.

Examples

Calculate Pitch for Corrugated Horn Antenna

Calculate the pitch for a default corrugated horn antenna with 6 corrugations.

Pitch = numCorrugationsToPitch(hornCorrugated,6)

Pitch = 0.0045

Calculate Pitch for Conical Corrugated Horn Antenna

Calculate the pitch for a default conical corrugated horn antenna with 8 corrugations.

Pitch = numCorrugationsToPitch(hornConicalCorrugated,8)

Pitch = 0.0089

Input Arguments
antenna — Corrugated-horn antenna
hornCorrugated object | hornConicalCorrugated object

Corrugated horn antenna, specified as either a hornCorrugated or a
hornConicalCorrugatedobject.

corrugations — Number of corrugations
positive scalar

Number of corrugations used in calculating the pitch, specified as a positive scalar.

5 Methods

5-340

Output Arguments
Pitch — Distance between two successive corrugations
positive scalar

Distance between two successive corrugations, specified as a positive scalar in meters.

See Also
hornConicalCorrugated | hornCorrugated

Introduced in R2020b

 numCorrugationsToPitch

5-341

gerberRead
Create PCBReader object with specified Gerber and drill files

Syntax
P = gerberRead(T)
P = gerberRead([],B)
P = gerberRead(T,B)
P = gerberRead(T,B,D)

Description
P = gerberRead(T) creates a PCBReader object with the top layer Gerber file specified in T.

P = gerberRead([],B) creates a PCBReader object with the bottom layer Gerber file specified in
B.

P = gerberRead(T,B) creates a PCBReader object with the specified top and bottom layer Gerber
files.

P = gerberRead(T,B,D) creates a PCBReader object with the specified top and bottom layer
Gerber files and the drill file specified in D .

Examples

Import and View Top Layer Gerber File

Use the gerberRead function to import a top layer Gerber file.

P = gerberRead('antenna_design_file.gtl');

Extract the metal layer from the file using the shapes function.

s = shapes(P);

View the top metal layer.

show(s)

5 Methods

5-342

Create Antenna Model Using Top and Bottom Layer Gerber Files

Use the gerberRead function to import top and bottom layer Gerber files.

P = gerberRead('antenna_design_file.gtl','antenna_design_file.gbl');

Display the stack.

P.StackUp

ans =
 stackUp with properties:

 NumLayers: 5
 Layer1: [1x1 dielectric]
 Layer2: 'antenna_design_file.gtl'
 Layer3: [1x1 dielectric]
 Layer4: 'antenna_design_file.gbl'
 Layer5: [1x1 dielectric]

Modify the third layer in the stack, which is the dielectric layer between the top and bottom metal
layers.

 gerberRead

5-343

S = P.StackUp;
S.Layer3 = dielectric('Name','FR4','EpsilonR', 4.4, 'Thickness', 0.8e-3);
P.StackUp = S;

Create the antenna model by calling the pcbStack object on the PCB reader.

pb2 = pcbStack(P);
figure
show(pb2)

Input Arguments
T — Top layer Gerber file
character vector | string scalar

Top layer Gerber file, specified as a character vector or string scalar. The file should be saved as a
GTL file.
Example: gerberRead('Filetop.gtl');

B — Bottom layer Gerber layer
character vector | string scalar

Bottom layer Gerber file, specified as a character vector or string scalar. The file should be saved as a
GBL file.

5 Methods

5-344

Example: gerberRead([],'FileBottom.gbl');

D — Drill file
character vector | string scalar

Drill file, specified a character vector or string scalar. You can specify either a DRL or a TXT file.
Example: gerberRead('Filetop.gtl','FileBottom.gbl','FileDrill.txt');

Output Arguments
P — Read files
PCBReader object

Read Gerber and drill files, returned as a PCBReader object.

See Also
PCBConnectors | PCBReader | PCBServices | PCBWriter | shapes

Topics
“Create Antenna Model from Gerber Files”

Introduced in R2020b

 gerberRead

5-345

coneangle2size
Calculates equivalent cone height, broad radius, and narrow radius for cone

Syntax
conedimensions = coneangle2size(slantheight,halfconeangle,Name,Value)

Description
conedimensions = coneangle2size(slantheight,halfconeangle,Name,Value) calculates
the equivalent cone height,broad radius, and narrow radius for a cone from its half cone angle,slant
length, and either feedwidth or narrow radius

Examples

Dimensions of Bicone Antenna Using Feedwidth

Calculate the cone height, the broad radius, and the narrow radius of the cone in a bicone antenna
using a half cone angle of 30 degrees, slant length of 0.0400 m, feed width of 0.001 m.

ant = bicone('FeedHeight',0.3e-3,'FeedWidth',0.5e-3);
show(ant)

5 Methods

5-346

m = coneangle2size(30,40e-3,'FeedWidth',1e-3)

m = struct with fields:
 NarrowRadius: 0.0013
 BroadRadius: 0.0213
 ConeHeight: 0.0346

ant.ConeHeight = m.ConeHeight;
ant.BroadRadius = m.BroadRadius;
ant.NarrowRadius = m.NarrowRadius;
show(ant)

Input Arguments
slantheight — Length from base of cone to point on circle with narrow radius
positive scalar

Length from the base of the cone to point on the circle with the narrow radius, specified as a positive
scalar in meters.
Data Types: double

halfconeangle — Half of cone angle
positive scalar

 coneangle2size

5-347

Half of the cone angle, specified as a positive scalar in degrees. This value must be between 5 and 85
degrees.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FeedWidth' = 0.02

FeedWidth — Width of feed
positive scalar

Width of the feed, specified as the comma-separated pair consisting of 'FeedWidth' and a positive
scalar in meters.
Data Types: double

NarrowRadius — Radius at apex of cone
positive scalar

Radius at the apex of the cone, specified as the comma-separated pair consisting of
'NarrowRadius' and a positive scalar in meters.
Data Types: double

See Also
bicone | biconeStrip | discone | disconeStrip | monocone

Introduced in R2020a

5 Methods

5-348

shapes
Extract and modify metal layers from PCBReader object

Syntax
shapes(B)

Description
shapes(B) extracts and modifies the individual metal layers from a PCBReader object.

Examples

Extract and Modify Metal Layer

Use the gerberRead function to import top-layer Gerber file.

P = gerberRead('antenna_design_file.gtl');

Extract the metal layer from the file using the shapes function.

S = shapes(P);

View the metal layer.

figure
show(S)

 shapes

5-349

Modify the metal layer.

S.Vertices = [-1 0 0;-0.5 0.2 0;0 0 0;0.0375 -0.0188 0];

View the modified metal layer.

show(S)

5 Methods

5-350

Extract Metal from Two-Layer Design PCBReader Object

Create a PCBReader object.

B = PCBReader;

Import a two-layer design.

st = B.StackUp;
st.Layer2 = 'UWBVivaldi.gtl';
st.Layer4 = 'UWBVivaldi.gbl';
B.StackUp = st;

Extract shapes from the metal layers.

S = shapes(B);

View the top-layer Gerber file.

figure
show(S(1))

 shapes

5-351

View the bottom-layer Gerber file.

figure
show(S(2))

5 Methods

5-352

Input Arguments
B — PCB reader
PCBReader object

PCB reader, specified as a PCBReader object.
Example: B = gerberRead('antenna_desgin_file.gbl')

See Also
PCBReader | gerberRead | removeHoles | removeSlivers

Introduced in R2020b

 shapes

5-353

removeSlivers
Remove sliver outliers from boundary of shape

Syntax
s = removeSlivers(shapeobject,slivertol)

Description
s = removeSlivers(shapeobject,slivertol) removes sliver outliers from boundary of shape.

Examples

Remove Slivers from Rectangle Shape for Antenna

Create two rectangle shapes. Change the length and the center of orientation of the second rectangle
to the values shown.

rect1 = antenna.Rectangle;
rect2 = antenna.Rectangle;
rect2.Length = 1e-7;
rect2.Center = [0,0.75];

Add rectangle 1 and rectangle 2.

rect3 = rect1 + rect2

rect3 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [8x3 double]

show(rect3)

5 Methods

5-354

Remove slivers.

rect4 = removeSlivers(rect3,1e-6)

rect4 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [4x3 double]

show(rect4)

 removeSlivers

5-355

Input Arguments
shapeobject — Antenna shape object with sliver outlier
antenna.Circle | antenna.Recatangle | antenna.Polygon

Antenna shape with sliver outlier, specified as antenna.Circle, antenna.Rectangle,
antenna.Polygon objects, antenna.Ellipse, or the shapes function.
Data Types: function_handle

slivertol — Sliver tolerance
nonnegative scalar

Sliver tolerance, specified as a nonnegative scalar.
Data Types: double

See Also
removeHoles

Introduced in R2020b

5 Methods

5-356

removeHoles
Remove holes from shape

Syntax
s = removeHoles(shapeobject,holetol)

Description
s = removeHoles(shapeobject,holetol) removes holes with area less than the provided
tolerance from the shape.

Examples

Remove Holes from Rectangular Shape of Antenna

Create two rectangle shapes. Change the length and the center of orientation of the second rectangle
to the values shown.

rect1 = antenna.Rectangle;
rect2 = antenna.Rectangle;
rect2.Length = 1e-7;
rect2.Width = 0.5

rect2 =
 Rectangle with properties:

 Name: 'myrectangle'
 Center: [0 0]
 Length: 1.0000e-07
 Width: 0.5000
 NumPoints: 2

Subtract rectangle 1 from rectangle 2

rect3 = rect1-rect2

rect3 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [9x3 double]

show(rect3)

 removeHoles

5-357

Remove holes from the new rectangle.

rect4 = removeHoles(rect3,1e-6)

rect4 =
 Polygon with properties:

 Name: 'mypolygon'
 Vertices: [4x3 double]

show(rect4)

5 Methods

5-358

Input Arguments
shapeobject — Antenna shape object with sliver outlier
antenna.Circle | antenna.Recatangle | antenna.Polygon | antenna.Ellipse

Antenna shape with sliver outlier, specified as antenna.Circle, antenna.Rectangle,
antenna.Polygon objects, antenna.Ellipse, or the shapes function.
Data Types: function_handle

holetol — Hole tolerance
nonnegative scalar

Hole tolerance, specified as a nonnegative scalar.
Data Types: double

See Also
removeSlivers

Introduced in R2020b

 removeHoles

5-359

Properties

6

PolarPattern Properties
Control appearance and behavior of polar plot

Description
Polar pattern properties control the appearance and behavior of the polar pattern object. By changing
property values, you can modify certain aspects of the polar plot. To change the default properties
use:

p = polarpattern(____,Name,Value)

To view all the properties of the polar pattern object use:

details(p)

You can also interact with the polar plot to change the properties. For more information, see “Interact
with Polar Plot”.

Properties
Antenna Metrics

'AntennaMetrics' — Show antenna metric
0 (default) | 1

Show antenna metrics, specified as a comma-separated pair consisting of 'AntennaMetrics' and 0
or 1. Antenna metric displays main, back, and side lobes of antenna/array pattern passed as input.
Data Types: logical

'Peaks' — Maximum number of peaks to compute for each data set
positive integer | vector of integers

Maximum number of peaks to compute for each data set, specified as a comma-separated pair
consisting of 'Peaks' and a positive scalar or vector of integers.
Data Types: double

Angle Properties

'AngleAtTop' — Angle at top of polar plot
90 (default) | scalar in degrees

Angle at the top of the polar plot, specified as a comma-separated pair consisting of 'AngleAtTop'
and a scalar in degrees.
Data Types: double

'AngleLim' — Visible polar angle span
[0 360] (default) | 1-by-2 vector of real values

6 Properties

6-2

Visible polar angle span, specified as a comma-separated pair consisting of 'AngleLim' and a 1-by-2
vector of real values.
Data Types: double

'AngleLimVisible' — Show interactive angle limit cursors
0 (default) | 1

Show interactive angle limit cursors, specified as a comma-separated pair consisting of
'AngleLimVisible' and 0 or 1.
Data Types: logical

'AngleDirection' — Direction of increasing angle
'ccw' (default) | 'cw'

Direction of increasing angle, specified as a comma-separated pair consisting of 'AngleDirection'
and 'ccw' (counterclockwise) or 'cw' (clockwise).
Data Types: char

'AngleResolution' — Number of degrees between radial lines
15 (default) | scalar in degrees

Number of degrees between radial lines depicting angles in the polar plot, specified as a comma-
separated pair consisting of 'AngleResolution' and a scalar in degrees.
Data Types: double

'AngleTickLabelRotation' — Rotate angle tick labels
0 (default) | 1

Rotate angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelRotation' and 0 or 1.
Data Types: logical

'AngleTickLabelVisible' — Show angle tick labels
1 (default) | 0

Show angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelVisible' and 0 or 1.
Data Types: logical

'AngleTickLabelFormat' — Format for angle tick labels
360 (default) | 180

Format for angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelFormat' and 360 degrees or 180 degrees.
Data Types: double

'AngleFontSizeMultiplier' — Scale factor of angle tick font
1 (default) | numeric value greater than zero

Scale factor of angle tick font, specified as a comma-separated pair consisting of
'AngleFontSizeMultiplier' and a numeric value greater than zero.

 PolarPattern Properties

6-3

Data Types: double

'Span' — Show angle span measurement
0 (default) | 1

Show angle span measurement, specified as a comma-separated pair consisting of 'Span' and 0 or
1.
Data Types: logical

'ZeroAngleLine' — Highlight radial line at zero degrees
0 (default) | 1

Highlight radial line at zero degrees, specified as a comma-separated pair consisting of
'ZeroAngleLine' and 0 or 1.
Data Types: logical

'DisconnectAngleGaps' — Show gaps in line plots with nonuniform angle spacing
1 (default) | 0

Show gaps in line plots with nonuniform angle spacing, specified as a comma-separated pair
consisting of 'DisconnectAngleGaps' and 0 or 1.
Data Types: logical

Magnitude Properties

'MagnitudeAxisAngle' — Angle of magnitude tick label radial line
75 (default) | real scalar in degrees

Angle of magnitude tick label radial line, specified as a comma-separated pair consisting of
'MagnitudeAxisAngle' and real scalar in degrees.
Data Types: double

'MagnitudeTick' — Magnitude ticks
[0 0.2 0.4 0.6 0.8] (default) | 1-by-N vector

Magnitude ticks, specified as a comma-separated pair consisting of 'MagnitudeTick' and a 1-by-N
vector, where N is the number of magnitude ticks.
Data Types: double

'MagnitudeTickLabelVisible' — Show magnitude tick labels
1 (default) | 0

Show magnitude tick labels, specified as a comma-separated pair consisting of
'MagnitudeTickLabelVisible' and 0 or 1.
Data Types: logical

'MagnitudeLim' — Minimum and maximum magnitude limits
[0 1] (default) | two-element vector of real values

Minimum and maximum magnitude limits, specified as a comma-separated pair consisting of
'MagnitudeLim' and a two-element vector of real values.
Data Types: double

6 Properties

6-4

'MagnitudeLimMode' — Determine magnitude dynamic range
'auto' (default) | 'manual'

Determine magnitude dynamic range, specified as a comma-separated pair consisting of
'MagnitudeLimMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeAxisAngleMode' — Determine angle for magnitude tick labels
'auto' (default) | 'manual'

Determine angle for magnitude tick labels, specified as a comma-separated pair consisting of
'MagnitudeAxisAngleMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeTickMode' — Determine magnitude tick locations
'auto' (default) | 'manual'

Determine magnitude tick locations, specified as a comma-separated pair consisting of
'MagnitudeTickMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeUnits' — Magnitude units
'dB' | 'dBLoss'

Magnitude units, specified as a comma-separated pair consisting of 'MagnitudeUnits' and 'db' or
'dBLoss'.
Data Types: char

'MagnitudeFontSizeMultiplier' — Scale factor of magnitude tick font
0.9000 (default) | numeric value greater than zero

Scale factor of magnitude tick font, specified as a comma-separated pair consisting of
'MagnitudeFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

Miscellaneous Properties

'NormalizeData' — Normalize each data trace to maximum value
0 (default) | 1

Normalize each data trace to maximum value, specified as a comma-separated pair consisting of
'NormalizeData' and 0 or 1.
Data Types: logical

'ConnectEndpoints' — Connect first and last angles
0 (default) | 1

Connect first and last angles, specified as a comma-separated pair consisting of
'ConnectEndpoints' and 0 or 1.
Data Types: logical

 PolarPattern Properties

6-5

'Style' — Style of polar plot display
'line' (default) | 'filled'

Style of polar plot display, specified as a comma-separated pair consisting of 'Style' and 'line' or
'filled'.
Data Types: char

'TemporaryCursor' — Create temporary cursor
0 (default) | 1

Create a temporary cursor, specified as a comma-separated pair consisting of 'TemporaryCursor'
and 0 or 1.
Data Types: logical

'ToolTips' — Show tool tips
1 (default) | 0

Show tool tips when you hover over a polar plot element, specified as a comma-separated pair
consisting of 'ToolTips' and 0 or 1.
Data Types: logical

'ClipData' — Clip data to outer circle
0 (default) | 1

Clip data to outer circle, specified as a comma-separated pair consisting of 'ClipData' and 0 or 1.
Data Types: logical

'NextPlot' — Directive on how to add next plot
'replace' (default) | 'new' | 'add'

Directive on how to add next plot, specified as a comma-separated pair consisting of 'NextPlot'
and one of the values in the table:

Property Value Effect
'new' Creates a figure and uses it as the current figure.
'add' Adds new graphics objects without clearing or

resetting the current figure.
'replace' Removes all axes objects and resets figure

properties to their defaults before adding new
graphics objects.

Legend and Title Properties

'LegendLabels' — Data tables for legend annotation
character vector | cell array of character vectors

Data tables for legend annotation, specified as a comma-separated pair consisting of
'LegendLabels' and a character vector or cell array of character vectors. Ⓐ denotes the active line
for interactive operation.
Data Types: char

6 Properties

6-6

'LegendVisible' — Show legend label
0 (default) | 1

Show legend label, specified as a comma-separated pair consisting of 'LegendVisible' and 0 or 1.
Data Types: logical

'TitleTop' — Title to display above the polar plot
character vector

Title to display above the polar plot, specified as a comma-separated pair consisting of 'TitleTop'
and a character vector.
Data Types: char

'TitleBottom' — Title to display below the polar plot
character vector

Title to display below the polar plot, specified as a comma-separated pair consisting of
'TitleBottom' and a character vector.
Data Types: char

'TitleTopOffset' — Offset between top title and angle ticks
0.1500 (default) | scalar

Offset between top title and angle ticks, specified as a comma-separated pair consisting of
'TitleTopOffset' and a scalar. The value must be in the range [-0.5,0.5].
Data Types: double

'TitleBottomOffset' — Offset between bottom title and angle ticks
0.1500 (default) | scalar

Offset between bottom title and angle ticks, specified as a comma-separated pair consisting of
'TitleBottomOffset' and a scalar. The value must be in the range [-0.5,0.5].
Data Types: double

'TitleTopFontSizeMultiplier' — Scale factor of top title font
1.1000 (default) | numeric value greater than zero

Scale factor of top title font, specified as a comma-separated pair consisting of
'TitleTopFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

'TitleBottomFontSizeMultiplier' — Scale factor of bottom title font
0.9000 (default) | numeric value greater than zero

Scale factor of bottom title font, specified as a comma-separated pair consisting of
'TitleBottomFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

'TitleTopFontWeight' — Thickness of top title font
'bold' (default) | 'normal'

 PolarPattern Properties

6-7

Thickness of top title font, specified as a comma-separated pair consisting of
'TitleTopFontWeight' and 'bold' or 'normal.
Data Types: char

'TitleBottomFontWeight' — Thickness of bottom title font
'normal' (default) | 'bold'

Thickness of bottom title font, specified as a comma-separated pair consisting of
'TitleBottomFontWeight' and 'bold' or 'normal.
Data Types: char

'TitleTopTextInterpreter' — Interpretation of top title characters
'none' (default) | 'tex' | 'latex'

Interpretation of top title characters, specified as a comma-separated pair consisting of
'TitleTopTextInterpreter' and:

• 'tex' — Interpret using a subset of TeX markup
• 'latex' — Interpret using LaTeX markup
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and
subscripts, modify the text type and color, and include special characters in the text.

This table lists the supported modifiers when the TickLabelInterpreter property is set to 'tex',
which is the default value. Modifiers remain in effect until the end of the text, except for superscripts
and subscripts which only modify the next character or text within curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely available) '\sl text'
\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name of

a font family to change the font
style. You can use this modifier
with other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

6 Properties

6-8

Modifier Description Example
\color{specifier} Set specifier as one of these

colors: red, green, yellow,
magenta, blue, black, white,
gray, darkGreen, orange, or
lightBlue.

'\color{magenta} text'

\color[rgb]{specifier} Set specifier as a three-
element RGB triplet to change
the font color.

'\color[rgb]{0,0.5,0.5}
text'

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The displayed text
uses the default LaTeX font style. The FontName, FontWeight, and FontAngle properties do not
have an effect. To change the font style, use LaTeX markup within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200 characters. For
multiline text, the maximum size reduces by about 10 characters per line.
Data Types: char

'TitleBottomTextInterpreter' — Interpretation of bottom title characters
'none' (default) | 'tex' | 'latex'

Interpretation of bottom title characters, specified as a comma-separated pair consisting of
'TitleBottomTextInterpreter' and:

• 'tex' — Interpret using a subset of TeX markup
• 'latex' — Interpret using LaTeX markup
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and
subscripts, modify the text type and color, and include special characters in the text.

This table lists the supported modifiers when the TickLabelInterpreter property is set to 'tex',
which is the default value. Modifiers remain in effect until the end of the text, except for superscripts
and subscripts which only modify the next character or the text within the curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely available) '\sl text'
\rm Normal font '\rm text'

 PolarPattern Properties

6-9

Modifier Description Example
\fontname{specifier} Set specifier as the name of

a font family to change the font
style. You can use this modifier
with other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifier as one of these
colors: red, green, yellow,
magenta, blue, black, white,
gray, darkGreen, orange, or
lightBlue.

'\color{magenta} text'

\color[rgb]{specifier} Set specifier as a three-
element RGB triplet to change
the font color.

'\color[rgb]{0,0.5,0.5}
text'

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The displayed text
uses the default LaTeX font style. The FontName, FontWeight, and FontAngle properties do not
have an effect. To change the font style, use LaTeX markup within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200 characters. For
multiline text, the maximum size reduces by about 10 characters per line.
Data Types: char

Grid Properties

'GridOverData' — Draw grid over data plots
0 (default) | 1

Draw grid over data plots, specified as a comma-separated pair consisting of 'GridOverData' and 0
or 1.
Data Types: logical

'DrawGridToOrigin' — Draw radial lines within innermost circle
0 (default) | 1

Draw radial lines within innermost circle of the polar plot, specified as a comma-separated pair
consisting of 'DrawGridToOrigin' and 0 or 1.
Data Types: logical

'GridAutoRefinement' — Increase angle resolution
0 (default) | 1

Increase angle resolution in the polar plot, specified as a comma-separated pair consisting of
'GridAutoRefinement' and 0 or 1. This property increases angle resolution by doubling the
number of radial lines outside each magnitude.
Data Types: logical

6 Properties

6-10

'GridWidth' — Width of grid lines
0.5000 (default) | positive scalar

Width of grid lines, specified as a comma-separated pair consisting of 'GridWidth' and a positive
scalar.
Data Types: double

'GridVisible' — Show grid lines
1 (default) | 0

Show grid lines, including magnitude circles and angle radii, specified as a comma-separated pair
consisting of 'GridVisible' and 0 or 1.
Data Types: logical

'GridForeGroundColor' — Color of foreground grid lines
[0.8000 0.8000 0.8000] (default) | 'none' | character vector of color names

Color of foreground grid lines, specified as a comma-separated pair consisting of
'GridForeGroundColor' and an RGB triplet, character vector of color names, or 'none'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'

 PolarPattern Properties

6-11

RGB Triplet Hexadecimal Color Code Appearance
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

'GridBackGroundColor' — Color of background grid lines
'w' (default) | character vector of color names | 'none'

Color of background grid lines, specified as a comma-separated pair consisting of
'GridBackGroundColor' and an RGB triplet, character vector of color names, or 'none'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'

6 Properties

6-12

RGB Triplet Hexadecimal Color Code Appearance
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

Marker, Color, Line, and Font Properties

'Marker' — Marker symbol
'none' (default) | character vector of symbols

Marker symbol, specified as a comma-separated pair consisting of 'Marker' and either 'none' or
one of the symbols in this table. By default, a line does not have markers. Add markers at selected
points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

'MarkerSize' — Marker size
6 (default) | positive value

Marker size, specified as a comma-separated pair consisting of 'MarkerSize' and a positive value
in point units.
Data Types: double

'ColorOrder' — Colors to use for multiline plots
seven predefined colors (default) | three-column matrix of RGB triplets

 PolarPattern Properties

6-13

Colors to use for multi-line plots, specified as a comma-separated pair consisting of 'ColorOrder'
and a three-column matrix of RGB triplets. Each row of the matrix defines one color in the color
order.
Data Types: double

'ColorOrderIndex' — Next color to use in color order
1 (default) | positive integer

Next color to use in color order, specified as a comma-separated pair consisting of
'ColorOrderIndex' and a positive integer. New plots added to the axes use colors based on the
current value of the color order index.
Data Types: double

'EdgeColor' — Color of data lines
'k' (default) | RGB triplet vector

Color of data lines, specified as a comma-separated pair consisting of 'EdgeColor' and a character
vector of color names or RGB triplet vector.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

6 Properties

6-14

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

'LineStyle' — Line style of the plot
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of the plot, specified as a comma-separated pair consisting of 'LineStyle' and one of the
symbols in the table:

Symbol Line Style Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

'LineWidth' — Line width of plot
1 (default) | positive scalar | positive vector

Line width of the plot, specified as a comma-separated pair consisting of 'LineWidth' and a positive
scalar or vector.

'FontSize' — Font size of text in plot
10 (default) | positive scalar

Font size of text in the plot, specified as a comma-separated pair consisting of 'FontSize' and a
positive scalar.

'FontSizeAutoMode' — Set font size
'auto' (default) | 'manual'

Set font size, specified as a comma-separated pair consisting of 'FontSizeAutoMode' and 'auto'
or 'manual'.
Data Types: char

See Also
“Interact with Polar Plot”

 PolarPattern Properties

6-15

RF Propagation Objects and Methods

7

siteviewer
Create Site Viewer map display for visualizing sites

Description
Use the siteviewer object to create a map viewer for visualizing transmitter and receiver sites.

Note

• Site Viewer is a 3-D map display and requires hardware graphics support for WebGL™.
• This object only supports antenna sites with CoordinateSystem property set to 'geographic'.

Creation

Syntax
viewer = siteviewer
viewer = siteviewer(Name,Value)

Description

viewer = siteviewer creates a “Site Viewer” map display for visualizing transmitter or receiver
sites.

viewer = siteviewer(Name,Value) creates a Site Viewer map display with properties specified
by one or more name-value pairs. Properties you do not specify retain their default values.

Properties
Name — Caption to display on map viewer window
'Site Viewer' (default) | character vector | string scalar

Caption to display on map viewer window, specified as a character vector or a string scalar.
Data Types: char | string

Position — Size and location of map viewer window in pixels
four-element integer-valued vector

Size and location of map viewer window in pixels, specified as a four-element integer-valued vector in
the form [left bottom width height]. The default value depends on the screen resolution such
that the window lies in the center of the screen with a width of 800 pixels and a height of 600 pixels.
Data Types: double

7 RF Propagation Objects and Methods

7-2

Basemap — Map imagery used to visualize sites
'satellite' (default) | 'streets' | 'openstreetmap' | 'darkwater' | 'grayland' |
'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map imagery used to visualize sites, specified as a one of the following:

• 'satellite' - Satellite imagery provided by ESRI
• 'streets' - Street maps provided by ESRI.
• 'openstreetmap' - Street maps provided by OpenStreetMap.
• 'darkwater' - Two-tone map with light gray for land and dark gray for water.
• 'grayland' - Two-tone map with gray for land and white for water.
• 'bluegreen' - Two-tone map with green for land and blue for water.
• 'colorterrain' - Shaded relief map derived from elevation and climate.
• 'grayterrain' - Shaded relief map in shades of gray.
• 'landcover' - Shaded relief map derived from satellite data.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by MathWorks®.
Data Types: char | string

Terrain — Data on which to visualize sites and perform terrain calculations
'gmted2010' (default) | 'none' | character vector | scalar

Data on which to visualize sites and perform terrain calculations, specified as a character vector or a
scalar previously added using addCustomTerrain or one of the following options:

• 'none' - Terrain elevation is 0 everywhere.
• 'gmted2010' - USGS GMTED2010 terrain data. This option requires an internet connection.

This property is read-only once the Site Viewer is created.

For limitations, see “Limitations” on page 7-12.
Data Types: char | string

Buildings — Name of OpenStreetMap (.osm) file to use as buildings data
string scalar | character vector

Name of the OpenStreetMap (.osm) file to use as buildings data, specified as a string scalar or a
character vector. The file must be in the current directory, in a directory on the MATLAB path. You
can also use a full or relative path to the file to specify the data. By default, this value is empty.

This property is read-only once the Site Viewer is created.

For limitations, see “Limitations” on page 7-12.
Data Types: char | string

Object Functions
clearMap Clear map visualizations
close Close map viewer window

 siteviewer

7-3

Examples

Default Site Viewer Map Display

Create a default Site Viewer map display.

viewer = siteviewer;

View Transmitter Site On Site Viewer

Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");

7 RF Propagation Objects and Methods

7-4

View a transmitter site on this map.

tx = txsite;
show(tx)

Compare Coverage Maps

Launch two Site Viewer windows.

 siteviewer

7-5

One Site Viewer window uses the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");

The second Site Viewer window does not use the terrain model.

viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

Create a transmitter site.

tx = txsite;

7 RF Propagation Objects and Methods

7-6

Generate a coverage map on each window. The map with terrain uses the Longley-Rice propagation
model by default.

coverage(tx,"Map",viewer1)

The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)

Close the maps.

 siteviewer

7-7

close(viewer1)
close(viewer2)

Site Viewer with Buildings

Launch siteviewer map window with basemap and buildings file for Manhattan. For more information
about the osm file, see [1] on page 7-0 .

viewer = siteviewer("Basemap","openstreetmap",...
 "Buildings","manhattan.osm");

Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
 "Longitude",-74.0114,...
 "AntennaHeight",50);
show(tx)

7 RF Propagation Objects and Methods

7-8

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, then remove the custom
basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL indicates which

server to use to get the data. For load balancing, the provider has three servers that you can use:
a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map data. Web
map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));

 siteviewer

7-9

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer object that
loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

After a custom basemap is added to siteviewer, the custom map is available for future calls to
siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;

7 RF Propagation Objects and Methods

7-10

Use removeCustomBasemap to remove the custom basemap from future calls to siteviewer. Note
the 'Open Topo Map' icon is no longer available in the Imagery tab.

removeCustomBasemap(name)
siteviewer;

 siteviewer

7-11

Limitations
Terrain

• Default terrain access requires Internet connection. If no internet connection exists, then Site
Viewer automatically uses 'none' in the property Terrain.

• Custom DTED terrain files for use with addCustomTerrain must be acquired outside of MATLAB
for example by using USGS EarthExplorer.

• When using custom terrain, analysis is restricted to the terrain region. For example, an error
occurs if trying to show a txsite or rxsite outside of the region.

Buildings

• OpenStreetMap files obtained from https://www.openstreetmap.org represent crowd-sourced map
data, and the completeness and accuracy of the buildings data may vary depending on the map
location.

7 RF Propagation Objects and Methods

7-12

https://www.openstreetmap.org/

• When downloading data from https://www.openstreetmap.org, select an export area larger than
the desired area to ensure that all expected building features are fully captured. Building features
at the edge of the selected export area may be missing.

• Building geometry and features are interpreted from the file according to the recommendations of
OpenStreetMap for 3D buildings.

See Also
addCustomBasemap | addCustomTerrain | removeCustomBasemap | removeCustomTerrain |
rxsite | txsite

Topics
“Site Viewer”

Introduced in R2019a

 siteviewer

7-13

https://www.openstreetmap.org/

txsite
Create radio frequency transmitter site

Description
Use the txsite object to create a radio frequency transmitter site.

Creation
Syntax
tx = txsite
tx = txsite(coordsys)
tx = txsite(___ ,Name,Value)

Description

tx = txsite creates a radio frequency transmitter site.

tx = txsite(coordsys) creates a transmitter site with the specified coordinate system. You can
specify either 'geographic' or 'cartesian' coordinate system.

tx = txsite(___ ,Name,Value) sets “Properties” on page 7-14 using one or more name-value
pairs. For example, tx = txsite('Name','TX Site') creates a transmitter site with the name TX
Site. Enclose each property name in quotes.

You can create multiple transmitter sites by using Name, Latitude, and Longitude properties. For
example: names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"]; lats =
[42.3467,42.3598,42.3763]; lons = [-71.0972,-71.0545,-71.0611];. The
CoordinateSystem property must be a string scalar or a character vector.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or string or as a row or column vector of N elements.
Specifying name as a row or column vector creates multiple sites.
Example: 'Name','Site 2'
Example: tx.Name = 'Fenway Park'
Example: names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"]; tx =
txsite('Name',names)

Data Types: char | string

CoordinateSystem — Coordinate system used to site location
'geographic' (default) | 'cartesian'

7 RF Propagation Objects and Methods

7-14

Coordinate system used to the site location, specified as 'geographic' or 'cartesian'. If you
specify 'geographic', the site location is defined using the Latitude, Longitude, and
AntennaHeight properties. If you specify 'cartesian', the site location is defined using the
AntennaPosition property.
Example: 'CoordinateSystem','cartesian'
Example: tx.CoordinateSystem = 'cartesian'

Latitude — Site latitude coordinates
42.3001 (default) | numeric scalar in the range [-90 90] | row or column vector

Site latitude coordinates, specified as a numeric scalar in the range of -90 to 90, or as a row or
column vector of N elements in the range [-90 90]. Specifying latitude as a row or column vector
creates multiple sites. The coordinates are defined using the world geodesic system of 1984
(WGS-84) reference ellipsoid. Latitude specifies north-south position.
Example: 'Latitude',45.098
Example: tx.Latitude = 45.098
Example: latitude = [42.3467,42.3598,42.3763]; tx = txsite('Latitude',latitude)

Dependencies

To enable this property, set CoordinateSystem to 'geographic'.

Longitude — Site longitude coordinates
-71.3504 (default) | numeric scalar in the range [-180 180] | row or column vector

Site longitude coordinates, specified as a numeric scalar in the range [-180 180]or as a row or
column vector of N elements in the range [-180 180]. Specifying longitude as a row or column
vector creates multiple sites. The coordinates are defined using the world geodesic system of 1984
(WGS-84) reference ellipsoid. Longitude specifies the east-west the position.
Example: 'Longitude',-68.890
Example: tx.Longitude = -71.0972
Example: longitude = [-71.0972,-71.0545,-71.0611]; tx =
txsite('Longitude',longitude)

Dependencies

To enable this property, set the CoordinateSystem to 'geographic'.

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as one of these:

• 'isotropic' to model an antenna that radiates uniformly in all directions
• An antenna element object from the “Antenna Catalog”

Note When using the antenna element object, use the design

function to design the antenna at the required transmit frequency. Then add this antenna element
to the transmitter site.

 txsite

7-15

• An array element from the “Array Catalog”
• An arrayConfig object if you have Communications Toolbox™
• Any antenna object in “Antennas, Microphones, and Sonar Transducers” (Phased Array System

Toolbox), if you have Phased Array System Toolbox™
• Any array object in “Array Geometries and Analysis” (Phased Array System Toolbox), if you have

Phased Array System Toolbox

Example: 'Antenna',monopole
Example: tx.Antenna = monopole

AntennaAngle — Antenna X-axis angle
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Antenna X-axis angle defined with reference to a local Cartesian coordinate system, specified as a
numeric scalar representing an azimuth angle in degrees or as a 2-by-1 vector or a 2-by-N matrix
representing both azimuth and elevation angles with each element unit in degrees.

The azimuth angle is measured counterclockwise from the east along the antenna X-axis (for
geographical sites) or from the global X-axis around the global Z-axis (for Cartesian sites). Specify the
azimuth angle between -180 to 180. degrees.

The elevation angle is measured from antenna X-axis along the horizontal or XY plane. Specify the
elevation angle between-90 to 90 degrees.
Example: 'AntennaAngle',25
Example: tx.AntennaAngle = [25,-80]

AntennaHeight — Antenna height above surface
10 (default) | nonnegative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a nonnegative numeric scalar in
meters. Maximum value for this property is 6,371,000 m.

If the site location coincides with the building location, the antenna height is measured from the top
of the building to the center of the antenna. Otherwise,the height is measured from ground elevation
to the center of the antenna.
Example: 'AntennaHeight',25
Example: tx.AntennaHeight = 15
Dependencies

To enable this property, set CoordinateSystem to 'geographic'.
Data Types:

AntennaPosition — Position of antenna center
[0;0;0] (default) | 3-by-1 vector

Position of the antenna center, specified as a 3-by-1 vector representing X-, Y-, and Z-axis Cartesian
coordinates with each element in meters.
Example: 'AntennaPosition',[0;2;4]
Example: tx.AntennaPosition = [0;2;4]

7 RF Propagation Objects and Methods

7-16

Dependencies

To enable this property, set CoordinateSystem to 'cartesian'.
Data Types:

SystemLoss — System loss
0 (default) | nonnegative scalar | row vector

System loss, specified as a nonnegative scalar in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: txsite.SystemLoss = 10
Data Types:

TransmitterFrequency — Transmitter operating frequency
1.9000e+09 (default) | positive scalar | row vector

Transmitter operating frequency, specified as a positive scalar in Hz. in the range [1e3 200e9.
Example: 'TransmitterFrequency',30e9
Example: txsite.TransmitterFrequency = 30e9
Data Types: double

TransmitterPower — Signal power at transmitter output
10 (default) | positive scalar

Signal power at transmitter output, specified as a positive scalar in watts. The transmitter out is
connected to the antenna.
Example: 'TransmitterPower',30
Example: txsite.TransmitterPower = 30
Data Types: double

Object Functions
show Show site location on map
hide Hide site location on map
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Location coordinates at a given distance and angle from site
los Plot or compute the line-of-sight (LOS) visibility between sites on a map
coverage Display coverage map
sinr Display signal-to-interference-plus-noise ratio (SINR) map
pattern Plot antenna radiation pattern on map

Examples

 txsite

7-17

Default Transmitter Site

Create and view a transmitter site at a latitude of 42.3001 and a longitude of -71.3504.

tx = txsite('Name','MathWorks Apple Hill','Latitude',42.3001,...
 'Longitude',-71.3504)

tx =
 txsite with properties:

 Name: 'MathWorks Apple Hill'
 Latitude: 42.3001
 Longitude: -71.3504
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 10
 SystemLoss: 0
 TransmitterFrequency: 1.9000e+09
 TransmitterPower: 10

show(tx)

View the coverage of the antenna.

pattern(tx)

7 RF Propagation Objects and Methods

7-18

Transmitter Site Using Dipole Antenna

Create and view a transmitter site using a dipole antenna at a latitude of 42.3001 and a longitude of
-71.3504.

fq = 2.5e9

fq = 2.5000e+09

tx = txsite('Name','MathWorks Apple Hill','Antenna',dipole,'Latitude',42.3001,...
 'Longitude',-71.3504,'Antenna',design(dipole,fq),'TransmitterFrequency',fq)

tx =
 txsite with properties:

 Name: 'MathWorks Apple Hill'
 Latitude: 42.3001
 Longitude: -71.3504
 Antenna: [1×1 dipole]
 AntennaAngle: 0
 AntennaHeight: 10
 SystemLoss: 0
 TransmitterFrequency: 2.5000e+09
 TransmitterPower: 10

show(tx);

 txsite

7-19

Transmitter Array Using Dipole Antenna

Specify the names, latitudes, and longitudes of three transmitter locations.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Define the frequency of the transmitters.

fq = 2.5e9;

Create and view the transmitter array using a dipole antenna.

txs = txsite('Name', names,...
'Antenna',dipole,'Latitude',lats,...
'Longitude',lons, ...
'TransmitterFrequency',fq);
show(txs)

7 RF Propagation Objects and Methods

7-20

See Also
rxsite | siteviewer

Introduced in R2017b

 txsite

7-21

rxsite
Create radio frequency receiver site

Description
Use the rxsite object to create a radio frequency receiver site.

Creation

Syntax
rx = rxsite
rx = rxsite(coordsys)
rx = rxsite(Name,Value)

Description

rx = rxsite creates a radio frequency receiver site.

rx = rxsite(coordsys) creates a receiver site with coordinate system set to 'geographic' or
'cartesian'.

rx = rxsite(Name,Value) sets properties using one or more name-value pairs. For example, rx
= rxsite('Name','RX Site') creates a receiver site with name RX Site. Enclose each property
name in quotes.

Create a 1-by-N array of receiver sites by specifying a property value as an array of N columns. Other
property values must be specified with either 1 or N columns. The Name, Latitude, and Longitude
properties may be specified as either a row vector or column vector with N elements. The
CoordinateSystem property must be a string scalar or a character vector.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or as a row or column vector or as a string.
Example: 'Name','Site 3'
Example: rx.Name = 'Site 3'
Example: If you want to assign multiple values then - names = ["Fenway Park","Faneuil
Hall","Bunker Hill Monument"]; rx = rxsite('Name',names)
Data Types: char | string

CoordinateSystem — Coordinate system of site location
'geographic' (default) | 'cartesian'

7 RF Propagation Objects and Methods

7-22

Coordinate system of the site location, specified as 'geographic' or 'cartesian'. If this property
is 'geographic', the site location is defined using the properties Latitude, Longitude, and
AntennaHeight. If this property is 'cartesian', the site location is defined using
AntennaPosition.
Example: 'CoordinateSystem','cartesian'
Example: tx.CoordinateSystem = 'cartesian'

Latitude — Site latitude coordinates
42.3021 (default) | numeric scalar | row or column vector

Site latitude coordinates, specified as a numeric scalar or a row or column vector in the range of
range -90 to 90. Coordinates are defined using Earth ellipsoid model WGS-84. Latitude is the north/
south angle.
Example: 'Latitude',45.098
Example: rx.Latitude = 45.098
Example: If you want to assign multiple values then - latitude = [42.3467,42.3598,42.3763];
rx = rxsite('Latitude',latitude)

Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.

Longitude — Site longitude coordinates
-71.3764 (default) | numeric scalar | row or column vector

Site longitude coordinates, specified as a numeric scalar or a row or column vector. Coordinates are
defined using Earth ellipsoid model WGS-84. Longitude is the east/west angle.
Example: 'Longitude',-68.890
Example: rx.Longitude = -68.890
Example: If you want to assign multiple values then - longitude =
[-71.0972,-71.0545,-71.0611]; rx = rxsite('Longitude',longitude)

Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as one of these:

• 'isotropic' to model an antenna that radiates uniformly in all directions.
• An antenna element from the “Antenna Catalog” or array elements from the “Array Catalog”.

Note When using antenna elements, please use the design function to design the antenna at the
required receive frequency. Then add this antenna element to the transmitter site

.
• If you have Communications Toolbox, an arrayConfig object.

 rxsite

7-23

• If you have Phased Array System Toolbox, any antenna object in “Antennas, Microphones, and
Sonar Transducers” (Phased Array System Toolbox) or any array object in “Array Geometries and
Analysis” (Phased Array System Toolbox).

Example: 'Antenna',monopole
Example: rx.Antenna = monopole

AntennaAngle — Angle of antenna local X-axis
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Angle of antenna local Cartesian coordinate system X-axis, specified as a numeric scalar representing
azimuth angle in degrees or a 2-by-1 vector representing both azimuth and elevation angles with each
element unit in degrees.

The azimuth angle is measured counterclockwise to the antenna X-axis, either from the east (for
geographical sites) or from the global X-axis around the global Z-axis (for Cartesian sites).

The elevation angle is measured from the horizontal plane or X-Y plane to the antenna X-axis in the
range -90 to 90 degrees.
Example: 'AntennaAngle',25
Example: tx.AntennaAngle = [25,-80]

AntennaHeight — Antenna height above surface
1 (default) | non-negative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a non-negative numeric scalar in
meters. Maximum value for this property is 6,371,000 m.

If the site coincides with the building, the height is measured from the top of the building to the
center of the antenna. Otherwise,the height is measured from ground elevation to the center of the
antenna.
Example: 'AntennaHeight',25
Example: rx.AntennaHeight = 15
Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.
Data Types:

AntennaPosition — Position of antenna center
[0;0;0] (default) | 3-by-1 vector

Position of the antenna center, specified as a 3-by-1 vector representing [x;y;z] Cartesian coordinates
with each element in meters.
Example: 'AntennaPosition',[0;2;4]
Example: tx.AntennaPosition = [0;2;4]
Dependencies

To use this property, choose CoordinateSystem must be set to 'cartesian'.
Data Types:

7 RF Propagation Objects and Methods

7-24

SystemLoss — System loss
0 (default) | nonnegative numeric scalar | row vector

System loss, specified as a non-negative numeric scalar or a row vector in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: rx.SystemLoss = 10
Data Types:

ReceiverSensitivity — Minimum received power to detect signal
-100 (default) | numeric scalar | row vector

Minimum received power to detect the signal, specified as a numeric scalar or a row vector in dBm.
Example: 'ReceiverSensitivity',-80
Example: rx.ReceiverSensitivity = -80
Data Types: double

Object Functions
show Show site location on map
hide Hide site location on map
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Location coordinates at a given distance and angle from site
sigstrength Signal strength due to transmitter
los Plot or compute the line-of-sight (LOS) visibility between sites on a map
link Display communication link on map
pattern Plot antenna radiation pattern on map

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx =
 rxsite with properties:

 Name: 'Site 2'
 Latitude: 42.3021
 Longitude: -71.3764
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 1
 SystemLoss: 0
 ReceiverSensitivity: -100

 rxsite

7-25

show(rx)

Receiver Array Site and Coverage Using Dipole Antenna

Create and show a 1-by-3 receiver site array using dipole antenna.

Define names and locations of the sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Define the sensitivity of the receivers.

 sens = -90;

Create and show receiver site array.

rxs = rxsite('Name', names,...
 'Antenna',dipole, 'Latitude',lats,...
 'Longitude',lons, ...
 'ReceiverSensitivity',sens);
show(rxs)

7 RF Propagation Objects and Methods

7-26

See Also
siteviewer | txsite

Introduced in R2017b

 rxsite

7-27

propagationData
Create RF propagation data container

Description
Use the propagationData object to import and visualize geolocated propagation data. The
measurement data can be path loss data, signal strength measurements, signal-to-noise-ratio (SNR)
data, or cellular information.

Creation

Syntax
pd = propagationData(filename)
pd = propagationData(table)

pd = propagationData(latitude,longitude,varname,varvalue)
pd = propagationData(___ ,Name,Value)

Description

pd = propagationData(filename) creates a propagation data container object by reading data
from a file specified by filename.

pd = propagationData(table) creates a propagation data container object from a table object
specified by table.

pd = propagationData(latitude,longitude,varname,varvalue) creates a propagation
data container object using latitude and longitude coordinates with data specified using
varname and varvalue.

pd = propagationData(___ ,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes.

Input Arguments

filename — Name of file containing propagation data
character vector | string scalar

Name of the file containing propagation data, specified as a character vector or a string scalar. The
file must be in the current directory, in a directory on the MATLAB path, or be specified using a full or
relative path. The file must be compatible with the readtable function. Call the readtable function
if customized parameters are required to import the file and then pass the table object to the
propagationData object.

Propagation data in the file must have one variable corresponding to the latitude values, one variable
corresponding to longitude values, and at least one variable containing numeric data.
Data Types: string | char

7 RF Propagation Objects and Methods

7-28

table — Table containing propagation data
table object

Table containing propagation data, specified as a table object.

Propagation data in the file must have one variable corresponding to the latitude values, one variable
corresponding to longitude values, and at least one variable containing numeric data.
Data Types: table

latitude — Latitude coordinate values
vector

Latitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid model WGS-84. The latitude coordinates must be in the range [-90 90].
Data Types: double

longitude — Longitude coordinate values
vector

Longitude coordinate values, specified as a vector in decimal degrees with reference to earth's
ellipsoid. model WGS-84.
Data Types: double

varname — Variable name
character vector | string scalar

Variable name, specified as a character vector or a string scalar. This variable name must correspond
to the variable with numeric data other than latitude or longitude. The variable name and the
corresponding values are stored as a column in the Data property table object.
Data Types: string | char

varvalue — Variable values
numeric vector

Variable values, specified as a numeric vector. The numeric vectors must be the same size as latitude
and longitude. The variable name and corresponding values are stored as a column in the Data
property table object.
Data Types: double

Output Arguments

pd — Propagation data
propagationData object

Propagation data, returned as a propagationData object.

Properties
Name — Propagation data name
'Propagation Data' (default) | character vector | string scalar

Propagation data name, specified as a character vector or string scalar.

 propagationData

7-29

Example: 'Name','propdata'
Example: pd.Name = 'propdata'
Data Types: char | string

Data — Propagation data table
scalar table object

This property is read-only.

Propagation data table, specified as a scalar table object containing a column corresponding to
latitude coordinates, a column corresponding to longitude coordinates, and one or more columns
corresponding to associated propagation data.
Data Types: table

DataVariableName — Name of data variable to plot
character vector | string scalar

Name of the data variable to plot, specified as a character vector or string scalar corresponding to a
variable name in the Data table used to create propagation data container object. The variable name
must correspond to a variable with numeric data and cannot correspond to the latitude or longitude
variables. The default value for this property is the name of the first numeric data variable name in
the Data table that is not a latitude or longitude variable.
Data Types: char | string

Object Functions
plot Plot propagation data on map
contour Display contour map
location Data location coordinates
getDataVariable Get data variable values of data points in propagation data object
interp Geographic data interpolation

Examples

Compute Signal Strength Data in Urban Environment

Launch Site Viewer with basemaps and building files for Manhattan. For more information about the
osm file, see [1] on page 7-0 .

viewer = siteviewer("Basemap","streets_dark",...
 "Buildings","manhattan.osm");

7 RF Propagation Objects and Methods

7-30

Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
 "Longitude",-74.0114,...
 "AntennaHeight",80);
show(tx)

 propagationData

7-31

Create receiver sites along nearby streets.

latitude = [linspace(40.7088, 40.71416, 50), ...
 linspace(40.71416, 40.715505, 25), ...
 linspace(40.715505, 40.7133, 25), ...
 linspace(40.7133, 40.7143, 25)]';
longitude = [linspace(-74.0108, -74.00627, 50), ...
 linspace(-74.00627 ,-74.0092, 25), ...
 linspace(-74.0092, -74.0110, 25), ...
 linspace(-74.0110, -74.0132, 25)]';
rxs = rxsite("Latitude", latitude, "Longitude", longitude);

Compute signal strength at each receiver location.

signalStrength = sigstrength(rxs, tx)';

Create a propagationData object to hold computed signal strength data.

tbl = table(latitude, longitude, signalStrength);
pd = propagationData(tbl);

Plot the signal strength data on a map as colored points.

legendTitle = "Signal" + newline + "Strength" + newline + "(dB)";
plot(pd, "LegendTitle", legendTitle, "Colormap", parula);

7 RF Propagation Objects and Methods

7-32

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
 "Latitude",lats,...
 "Longitude",lons, ...
 "TransmitterFrequency",2.5e9);
show(txs)

 propagationData

7-33

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)

7 RF Propagation Objects and Methods

7-34

Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR");

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);

 propagationData

7-35

See Also
readtable | rxsite | siteviewer | txsite

Introduced in R2020a

7 RF Propagation Objects and Methods

7-36

fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or clouds. R
represents the signal path length. freq represents the signal carrier frequency, T is the ambient
temperature, and den specifies the liquid water density in the fog or cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and fog
attenuation model to calculate path loss of signals propagating through clouds and fog. See [1]
(Phased Array System Toolbox). Fog and clouds are the same atmospheric phenomenon, differing only
by height above ground. Both environments are parametrized by their liquid water density. Other
model parameters include signal frequency and temperature. This function applies to cases when the
signal path is contained entirely in a uniform fog or cloud environment. The liquid water density does
not vary along the signal path. The attenuation model applies only for frequencies at 10–1000 GHz.

Examples

Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at 1000 meters
altitude. Compute the attenuation for frequencies from 15 to 1000 GHz. A typical value for the cloud
liquid water density is 0.5 g/m3. Assume the atmospheric temperature at 1000 meters is 20∘C.

R = 1000.0;
freq = [15:5:1000]*1e9;
T = 20.0;
lwd = 0.5;
L = fogpl(R,freq,T,lwd);

Plot the specific attenuation as a function of frequency. Specific attenuation is the attenuation or loss
per kilometer.

loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

 fogpl

7-37

Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M nonnegative real-valued
vector

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative real-values.
Total attenuation is the specific attenuation multiplied by the path length. Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the range 10–1000 GHz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0

7 RF Propagation Objects and Methods

7-38

den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3. Typical values for
liquid water density in fog range from approximately 0.05 g/m3 for medium fog to approximately 0.5
g/m3 for thick fog. For medium fog, visibility is about 300 meters. For heavy fog, visibility is about 50
meters. Cumulus cloud liquid water density is typically 0.5 g/m3.
Example: 0.01

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.840-6: Attenuation due to clouds and fog. 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fogpl

7-39

Usage notes and limitations:

Does not support variable-size inputs.

See Also

7 RF Propagation Objects and Methods

7-40

fspl
Free space path loss

Syntax
L = fspl(R,lambda)

Description
L = fspl(R,lambda) returns the free space path loss in decibels for a waveform with wavelength
lambda propagated over a distance of R meters. The minimum value of L is zero, indicating no path
loss.

Examples

Calculate Free-Space Path Loss

Calculate the free-space path loss (in dB) of a 10 GHz radar signal over a distance of 10 km.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
R = 10e3;
L = fspl(R,lambda)

L = 132.4478

Input Arguments
R — Propagation distance of signal
real-valued 1-by-M or M-by-1 vector

Units are in meters.

lambda — Speed of propagation divided by the signal frequency
real-valued 1-by-N or N-by-1 vector

Wavelength units are meters.

Output Arguments
L — Path loss in decibels
M-by-N non-negative matrix. A value of zero signifies no path loss.

When lambda is a scalar, L has the same dimensions as R.

 fspl

7-41

More About
Free Space Path Loss

The free-space path loss, L, in decibels is:

L = 20log10(4πR
λ)

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in a loss smaller than 0 dB,
equivalent to a signal gain. For this reason, the loss is set to 0 dB for range values R ≤ λ/4π.

References
[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also

7 RF Propagation Objects and Methods

7-42

gaspl
RF signal attenuation due to atmospheric gases

Syntax
L = gaspl(range,freq,T,P,den)

Description
L = gaspl(range,freq,T,P,den) returns the attenuation, L, when signals propagate through the
atmosphere. range represents the signal path length, and freq represents the signal carrier
frequency. T represents the ambient temperature, P represents the atmospheric pressure, and den
represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU) atmospheric gas
attenuation model [1] to calculate path loss for signals primarily due to oxygen and water vapor. The
model computes attenuation as a function of ambient temperature, pressure, water vapor density, and
signal frequency. The function requires that the signal path is contained entirely in a uniform
environment. Atmospheric parameters do not vary along the signal path. The attenuation model
applies only for frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1 to 1000 GHz for an atmospheric pressure of 101.300 kPa
and a temperature of 15∘C. Plot the spectrum for a water vapor density of 7.5 g/m3 and then plot the
spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.

T = 15;
P = 101300.0;
W = 7.5;
L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.

 gaspl

7-43

semilogy(freq/1e9,L)
hold on
semilogy(freq/1e9,L0)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB)')
hold off

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to 1000 GHz.
Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor density of 7.5 g/m3. The air
temperature is 20∘C. Specific attenuation is defined as dB loss per kilometer. Then, plot the actual
attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.

T = 20.0;
Patm = 101.325e3;
rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.

7 RF Propagation Objects and Methods

7-44

km = 1000.0;
c = physconst('LightSpeed');
freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);
semilogy(freqs/1e9,loss)
grid on
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1 to 100 km. The
frequency corresponds to an X-band radar. Then, plot the free space loss and the total (atmospheric +
free space) loss.

ranges = [1:100]*1000;
freq_xband = 10e9;
loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);
lambda = c/freq_xband;
loss_fsp = fspl(ranges,lambda);
semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)
legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')
xlabel('Range (km)')
ylabel('Loss (dB)')

 gaspl

7-45

Input Arguments
range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M nonnegative
real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued scalar or
vector. You can specify multiple path lengths simultaneously. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. You can specify multiple frequencies simultaneously.
Frequencies must lie in the range 1–1000 GHz. Units are in hertz.
Example: [1.4e9,2.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0

7 RF Propagation Objects and Methods

7-46

P — Dry air pressure
positive real-valued scalar

Dry air pressure, specified as a positive real-valued scalar. Units are in Pa. One standard atmosphere
at sea level is 101325 Pa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar. Units are
g/m3. The maximum water vapor density of air at 30° C is approximately 30.0 g/m3. The maximum
water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f) + γw(f) = 0.1820f N″(f) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f) = ∑
i

SiFi + N″D(f)

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

 gaspl

7-47

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.676-10: Attenuation by atmospheric gases 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also

7 RF Propagation Objects and Methods

7-48

rainpl
RF signal attenuation due to rainfall

Syntax
L = rainpl(range,freq,rainrate)
L = rainpl(range,freq,rainrate,elev)
L = rainpl(range,freq,rainrate,elev,tau)
L = rainpl(range,freq,rainrate,elev,tau,pct)

Description
L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to rainfall. In this
syntax, attenuation is a function of signal path length, range, signal frequency, freq, and rain rate,
rainrate. The path elevation angle and polarization tilt angles are assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall attenuation
model to calculate path loss of signals propagating in a region of rainfall [1]. The function applies
when the signal path is contained entirely in a uniform rainfall environment. Rain rate does not vary
along the signal path. The attenuation model applies only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle, tau, of
the signal.

L = rainpl(range,freq,rainrate,elev,tau,pct) also specifies the specified percentage of
time, pct. pct is a scalar in the range of 0.001–1, inclusive. The attenuation, L, is computed from a
power law using the long-term statistical 0.01% rain rate (in mm/h).

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10 km in light
and heavy rain.

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;
L = rainpl(10000,20.0e9,rr)

L = 1.3009

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;
L = rainpl(10000,20.0e9,rr)

 rainpl

7-49

L = 8.1584

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to a 20 mm/hr statistical rainfall for signals in the frequency range
from 1 to 1000 GHz. The path distance is 10 km.

rr = 20.0;
freq = [1:1000]*1e9;
L = rainpl(10000,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle. Elevation angles
vary from 0 to 90 degrees. Assume a path distance of 100 km and a signal frequency of 100 GHz.

Set the rain rate to 10 mm/hr.

7 RF Propagation Objects and Methods

7-50

rr = 10.0;

Set the elevation angles, frequency, range.

elev = [0:1:90];
freq = 100.0e9;
rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization tilt angle.
Assume a path distance of 100 km, a signal frequency of 100 GHz, and a path elevation angle of 0
degrees. Set the rainfall rate to 10 mm/hour. Plot the signal attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;

 rainpl

7-51

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 100.0e9;
rng = 100e3*ones(size(tau));
rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector | nonnegative real-
valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-by-M vector.
Units are in meters.
Example: [13000.0,14000.0]

7 RF Propagation Objects and Methods

7-52

freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector | nonnegative real-valued
1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or 1-by-N
vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Long-term statistical rain rate
nonnegative real-valued scalar

Long-term statistical rain rate, specified as a nonnegative real-valued scalar. The long-term statistical
rain rate is the rain rate that is exceeded 0.01% of the time. You can adjust the percent of time using
the pct argument. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by- M vector. Units
are in degrees between –90° and 90°. If elev is a scalar, all propagation paths have the same
elevation angle. If elev is a vector, its length must match the dimension of range and each element
in elev corresponds to a propagation range in range.
Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-by-1 or 1-by-
M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all signals have the same tilt
angle. If tau is a vector, its length must match the dimension of range. In that case, each element in
tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semi-major axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds to the same polarization
state as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

pct — Exceedance percentage of rainfall
0.01 (default) | positive scalar between 0.001 and 1

Exceedance percentage of rainfall, specified as a positive scalar between 0.001 and 1. The long-term
statistical rain rate is the rain rate that is exceeded pct of the time. Units are dimensionless.
Data Types: double

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

 rainpl

7-53

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.

7 RF Propagation Objects and Methods

7-54

[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[3] Recommendation ITU-R P.837-7: Characteristics of precipitation for propagation modelling

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also

 rainpl

7-55

addCustomTerrain
Add custom terrain data

Syntax
addCustomTerrain(terrainName,files)
addCustomTerrain(___ ,Name,Value)

Description
addCustomTerrain(terrainName,files) adds the terrain data specified with a user-defined
terrainName and files. You can use this function to add custom terrain data in Site Viewer and
other RF propagation functions. You can access the custom terrain data in the current and future
sessions of MATLAB until you call removeCustomTerrain.

Note In Antenna Toolbox, addCustomTerrain function converts terrain elevation data from
orthometric to ellipsoidal for visualization and when performing Euclidean distance or angle
calculations between locations for example for free space path loss.

addCustomTerrain(___ ,Name,Value) adds custom terrain data with additional options specified
by one or more name-value pairs.

Examples

Site Viewer Maps Using Custom Terrain

Add terrain for a region around Boulder, CO. The DTED file was downloaded from the "SRTM Void
Filled" data set available from the U.S. Geological Survey.

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available " + ...
 "from the U.S. Geological Survey.";
addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Use the custom terrain name in Site Viewer.

viewer = siteviewer("Terrain","southboulder");

7 RF Propagation Objects and Methods

7-56

Create a site with the terrain region.

mtzion = txsite("Name","Mount Zion", ...
 "Latitude",39.74356, ...
 "Longitude",-105.24193, ...
 "AntennaHeight", 30);
show(mtzion)

 addCustomTerrain

7-57

Create a coverage map of the area within 20 km of the transmitter site.

coverage(mtzion, ...
 "MaxRange",20000, ...
 "SignalStrengths",-100:-5)

7 RF Propagation Objects and Methods

7-58

Remove the custom terrain.

close(viewer)
removeCustomTerrain("southboulder")

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data, specified as a string scalar or a character vector.
Data Types: char | string

files — List of DTED files
string scalar | character vector | cell array of character vectors

List of DTED files, specified as a string scalar, a character vector or a cell array of character vectors.

Note If you specify multiple files, they must combine to define a complete rectangular geographic
region. If not, you must set the name-value pair 'FillMissing' to 'true'.

 addCustomTerrain

7-59

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FillMissing',true

Attribution — Attribution of custom terrain data
character vector | string scalar

Attribution of custom terrain data, specified as a character vector or a string scalar. The attribution is
displayed on the Site Viewer map. By default, the value is empty.
Data Types: char | string

FillMissing — Fill data of missing files with value 0
false (default) | true

Fill data of missing files with value 0, specified as true or false. Missing file values are required to
complete a rectangular geographic region with the input files.
Data Types: logical

WriteLocation — Name of folder to write extracted terrain files to
character vector | string scalar

Name of folder to write extracted terrain files to, specified as a character vector or a string scalar.
The folder must exist and have write permissions. By default, addCustomTerrain writes extracted
terrain files to a temporary folder that it generates using the tempname function.
Data Types: char | string

See Also
removeCustomTerrain | siteviewer

Introduced in R2019a

7 RF Propagation Objects and Methods

7-60

angle
Angle between sites

Syntax
[az,el] = angle(site1,site2)
[az,el] = angle(site1,site2,path)
[az,el] = angle(___ ,Name,Value)

Description
[az,el] = angle(site1,site2) returns the azimuth and elevation angles between site 1 and site

[az,el] = angle(site1,site2,path) returns the angles using a specified path type, either
Euclidean or great circle path.

[az,el] = angle(___ ,Name,Value) returns the azimuth and elevation angles with additional
options specified by name-value pairs.

Examples

Angle Between Sites

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx)

az = 14.0142

el = -0.2816

Get the azimuth angle between sites in degrees clockwise from north.

azFromEast = angle(tx,rx); % Unit: degrees counter-clockwise from east
azFromNorth = -azFromEast + 90 % Convert angle to clockwise from north

azFromNorth = 75.9858

Angle Between Sites When Path is Great Circle

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

 angle

7-61

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx,'greatcircle')

az = 14.0635

el = 0

Input Arguments
site1,site2 — Transmitter or receiver site
txsite or rxsite object

Transmitter or receiver site, specified as a txsite or rxsite object. You can use array inputs to
specify multiple sites.

path — Measurement path type
'euclidean' or 'greatcircle'

Measurement path type, specified as one of the following:

• 'euclidean': Uses the shortest path through space connecting the antenna center positions of
the site 1 and site 2.

• 'greatcircle': Uses the shortest path on the surface of the earth connecting the latitude and
longitude locations of site 1 and site 2. This path uses a spherical Earth model.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

7 RF Propagation Objects and Methods

7-62

Coordinate System Valid map values Default map value
'cartesian' 'none', triangulation object or

name of an STL file.
'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
az — Azimuth angle between site 1 and site 2
M-by-N arrays

Azimuth angle between site 1 and site 2, returned as M-by-N arrays in degrees. M is the number of
sites in sites 2 and N is the number of sites in sites 1. The azimuth angle is expressed in degrees
counter-clockwise from the east (for geographic sites), or from the global x-axis around the global z-
axis (for Cartesian sites), ranging from -180 to 180

el — Elevation angle between site 1 and site 2
M-by-N arrays

Elevation angle between site 1 and site 2, returned as M-by-N arrays in degrees. M is the number of
sites in sites 2 and N is the number of sites in sites 1 The elevation angle is expressed in degrees
from the horizontal (or X-Y) plane, ranging from -90 to 90.

When the path type specified is 'greatcircle', elevation angle is always zero.

See Also
distance

Introduced in R2017b

 angle

7-63

clearMap
Clear map visualizations

Syntax
clearMap(viewer)

Description
clearMap(viewer) removes all visualizations from the map.

Examples

View Transmitter Site On Site Viewer

1 Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");

2 View a transmitter site on this map.

tx = txsite;
show(tx)

7 RF Propagation Objects and Methods

7-64

3 Clear the map.

t = timer('TimerFcn',@(~,~)disp('Fired.'),'StartDelay',3);
start(t)
wait(t)
clearMap(viewer)

Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object

 clearMap

7-65

Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer object.1

See Also
close | siteviewer

Introduced in R2019a

1. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

7 RF Propagation Objects and Methods

7-66

close
Close map viewer window

Syntax
close(viewer)

Description
close(viewer) closes the map viewer window and deletes the handle

Examples

Compare Coverage Maps

Launch two Site Viewer windows.

One Site Viewer window uses the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");

The second Site Viewer window does not use the terrain model.

viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

 close

7-67

Create a transmitter site.

tx = txsite;

Generate a coverage map on each window. The map with terrain uses the Longley-Rice propagation
model by default.

coverage(tx,"Map",viewer1)

The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)

7 RF Propagation Objects and Methods

7-68

Close the maps.

close(viewer1)
close(viewer2)

Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object

Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer object.2

See Also
clearMap | siteviewer

Introduced in R2019a

2. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 close

7-69

coverage
Display coverage map

Syntax
coverage(txs)
coverage(txs,propmodel)
coverage(txs,rxs)
coverage(txs,rxs,propmodel)
coverage(___ ,Name,Value, ___)
pd = coverage(txs, ___)

Description
coverage(txs) displays the coverage map for the transmitter site. Each colored contour of the map
defines an area where the corresponding signal strength is transmitted to the mobile receiver.

Note This function only supports antenna sites with CoordinateSystem property set to
'geographic'.

coverage(txs,propmodel) displays the coverage map based on the specified propagation model.
The default propagation model is 'longley-rice' when terrain is in use and 'freespace' when
terrain is not used.

coverage(txs,rxs) displays the coverage map based on the receiver site properties.

coverage(txs,rxs,propmodel) displays the coverage map based on the receiver site properties
and specified propagation model.

coverage(___ ,Name,Value, ___) displays the coverage map using additional options specified
by the Name,Value pairs.

pd = coverage(txs, ___) returns computed coverage data in the propagation data object, pd. No
plot is displayed and any graphical only name-value pairs are ignored.

Examples

Coverage Map of Transmitter

Create a transmitter site at MathWorks headquarters.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Show the coverage map.

coverage(tx)

7 RF Propagation Objects and Methods

7-70

Coverage Map Using Transmitter and Receiver

Create a transmitter site at MathWorks headquarters.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Create a receiver site at Fenway Park with an antenna height of 1.2 m and system loss of 10 dB.

rx = rxsite('Name','Fenway Park', ...
 'Latitude',42.3467, ...
 'Longitude',-71.0972,'AntennaHeight',1.2,'SystemLoss',10);

Calculate the coverage area of the transmitter using a close-in propagation model.

coverage(tx,rx,'PropagationModel','closein')

 coverage

7-71

Coverage Map for Strong and Weak Signals

Define strong and weak signal strengths with corresponding colors.

strongSignal = -75;
strongSignalColor = "green";
weakSignal = -90;
weakSignalColor = "cyan";

Create a transmitter site and display the coverage map.

tx = txsite('Name','MathWorks','Latitude', 42.3001,'Longitude', -71.3503);
coverage(tx,'SignalStrengths',[strongSignal,weakSignal], ...
 'Colors', [strongSignalColor,weakSignalColor])

7 RF Propagation Objects and Methods

7-72

Coverage Map of Directional Antenna in Rain

Define a Yagi-Uda antenna designed for a transmitter frequency of 4.5 GHz. Tilt the antenna to direct
radiation in the XY-plane (i.e., geographic azimuth).

fq = 4.5e9;
y = design(yagiUda,fq);
y.Tilt = 90;
y.TiltAxis = 'y';

Create a transmitter site with this directional antenna.

tx = txsite('Name','MathWorks',...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503, ...
 'Antenna', y, ...
 'AntennaHeight', 60, ...
 'TransmitterFrequency', fq, ...
 'TransmitterPower', 10);

Display the coverage map using the rain propagation model. The map pattern points east, which
corresponds to default antenna angle value of 0 degrees.

coverage(tx,'rain','SignalStrengths',-90)

 coverage

7-73

Combined Coverage Map of Multiple Transmitters

Define the names and the locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create the transmitter site array.

txs = txsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons, ...
 'TransmitterFrequency',2.5e9);

Display the combined coverage map for multiple signal strengths, using close-in propagation model.

coverage(txs,'close-in','SignalStrengths',-100:5:-60)

7 RF Propagation Objects and Methods

7-74

Coverage Map Using Longley-Rice and Ray Tracing Method

Launch Site Viewer using buildings in Chicago. For more information about the osm file, see [1] on
page 7-0 .

viewer = siteviewer("Buildings","chicago.osm");

 coverage

7-75

Create a transmitter site on the building.

tx = txsite('Latitude',41.8800, ...
 'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);
show(tx)

7 RF Propagation Objects and Methods

7-76

Coverage Map Using Longley-Rice Propagation Model

Create a coverage map of the city using the Longley-Rice propagation model.

coverage(tx,"SignalStrengths",-100:-5,"MaxRange",250,"Resolution",1)

 coverage

7-77

Longley-Rice models over-the-rooftops propagation along vertical slices and obstructions tend to
dominate the coverage region.

Coverage Map Using Ray Tracing Propagation Model

Create a coverage map of the city using the ray tracing image method propagation model.

coverage(tx,"raytracing-image-method","SignalStrengths",-100:-5,"MaxRange",250,"Resolution",2)

7 RF Propagation Objects and Methods

7-78

This coverage map shows new regions that are in service due to reflected propagation paths.

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
txs — Transmitter sites
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
'geographic'.

rxs — Receiver sites
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
'geographic'.

 coverage

7-79

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the name-value pair
'PropagationModel' to specify this parameter. You can also use the propagationModel function
to define this input. The default propagation model is 'longley-rice' when terrain is enabled and
'freespace' when terrain is disabled.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of signal strength to compute
'power' (default) | 'efield'

Type of signal strength to compute, specified as the comma-separated pair consisting of 'Type' and
'power' or 'efield'.

When type is 'power', SignalStrengths is expressed in power units (dBm) of the signal at the
mobile receiver input. When type is 'efield', SignalStrengths is expressed in electric field
strength units (dBμV/m) of signal wave incident on the antenna.
Data Types: char

SignalStrengths — Signal strengths to display on coverage map
numeric vector

Signal strengths to display on coverage map, specified as the comma-separated pair consisting of
'SignalStrengths' and a numeric vector.

Each strength uses different colored filled contour on the map. The default value is -100 dBm if the
'Type' name-value pair is 'power' and 40 dBμV/m if 'Type' is 'efield'.
Data Types: double

PropagationModel — Propagation model to use for path loss calculations
'longley-rice' (default) | 'freespace' | 'close-in' | 'rain' | 'gas' | 'fog' |
'raytracing-image-method' | propagation model object

Propagation model to use for the path loss calculations, specified as the comma-separated pair
consisting of 'PropagationModel' and one of the following:

• 'freespace' - Free space propagation model
• 'rain' - Rain propagation model
• 'gas' - Gas propagation model
• 'fog' - Fog propagation model
• 'close-in' - Close-in propagation model
• 'longley-rice' - Longley-Rice propagation model

7 RF Propagation Objects and Methods

7-80

• 'tirem' - Tirem propagation model
• 'raytracing-image-method' - -Raytracing propagation model using method of images.

The default propagation model is 'longley-rice' when terrain is enabled and 'freespace' when
terrain is disabled. If 'raytracing-image-method' is specified, the value of
'MaxNumReflections' property must be lesser than 1.
Data Types: char

MaxRange — Maximum range of coverage map from each transmitter site
numeric scalar

Maximum range of coverage map from each transmitter site, specified as a positive numeric scalar in
meters representing great circle distance. MaxRange defines the region of interest on the map to
plot. The default value is automatically computed based on the propagation model type as shown:

Propagation Model MaxRange
Basic or urban Range of minimum value in SignalStrengths.
Terrain 30 km or distance to the furthest building.
Multipath 500 m

Data Types: double

Resolution — Resolution of coverage map
'auto' (default) | numeric scalar

Resolution of coverage map, specified as the comma-separated pair consisting of 'Resolution' and
a numeric scalar in meters.

The resolution of 'auto' computes the maximum value scaled to 'MaxRange'. Decreasing the
resolution increases the quality of the coverage map and the time required to create it.
Data Types: char | double

ReceiverGain — Mobile receiver gain
2.1 (default) | numeric scalar

Mobile receiver gain, specified as the comma-separated pair consisting of 'ReceiverGain' and a
numeric scalar in dB. The receiver gain value includes the mobile receiver antenna gain and system
loss.

The receiver gain computes received signal strength when the 'Type' is 'power'.

If receiver site argument rx is passed to coverage, the default value is the maximum gain of the
receiver antenna with the system loss subtracted. Otherwise the default value is 2.1.
Data Types: char | double

ReceiverAntennaHeight — Mobile receiver antenna height above ground elevation
1 (default) | numeric scalar

Mobile receiver antenna height above ground elevation, specified as the comma-separated pair
consisting of 'ReceiverAntennaHeight' and a numeric scalar in meters.

 coverage

7-81

If receiver site argument rx is passed to coverage, the default value is the AntennaHeight of the
receiver. Otherwise the default value is 1.
Data Types: double

Colors — Colors of filled contours on coverage map
M-by-3 array of RGB triplets | array of strings | cell array of character vectors

Filled contours color of coverage map, specified as the comma-separated pair consisting of 'Colors'
and an M-by-3 array of RGB triplets, an array of strings, or a cell array of character vectors.

Colors are assigned element-wise to 'SignalStrengths' values for coloring the corresponding
filled contours.

'Colors' cannot be used with 'ColorLimits' or 'ColorMap'.

For more information, see ColorSpec (Color Specification).
Data Types: char | string | double

ColorLimits — Color limits for colormap
two-element vector

Color limits for colormap, specified as the comma-separated pair consisting of 'ColorLimits' and a
two-element vector of type [min max].

The color limits indicate the signal level values that map to the first and last colors on the colormap.

The default value is [-120 -5] if the 'Type' name-value pair is 'power' and [20 135] if 'Type'
is 'efields'.

'ColorLimits' cannot be used with 'Color'.
Data Types: double

ColorMap — Colormap filled contours for coverage map
'jet' (default) | predefined color map | M-by-3 array of RGB triplets

Colormap filled contours on coverage map, specified as the comma-separated pair consisting of
'ColorMap' and a predefined colormap or M-by-3 array of RGB triplets, where M defines individual
colors.

'ColorMap' cannot be used with 'Colors'.
Data Types: char | double

ShowLegend — Show signal strength color legend on map
true (default) | false

Show signal strength color legend on map, specified as the comma-separated pair consisting of
'ShowLegend' and true or false.
Data Types: logical

Transparency — Transparency of coverage map
0.4 (default) | numeric scalar

7 RF Propagation Objects and Methods

7-82

Transparency of coverage map, specified as the comma-separated pair consisting of
'Transparency' and a numeric scalar in the range 0 to 1. 0 is transparent and 1 is opaque.
Data Types: double

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as the comma-separated pair consisting of 'Map' and
a siteviewer object.3

Data Types: char | string

Output Arguments
pd — Coverage data
propagationData object

Coverage data, returned as a propagationData object consisting of Latitude and Longitude, and a
signal strength variable corresponding to the plot type. Name of the propagationData is
"Coverage Data".

See Also
link | propagationModel | sigstrength | sinr

Topics
ColorSpec (Color Specification)

Introduced in R2017b

3. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 coverage

7-83

distance
Distance between sites

Syntax
d = distance(site1,site2)
d = distance(site1,site2,path)
d = distance(___ ,Name,Value)

Description
d = distance(site1,site2) returns the distance in meters between site1 and site2.

d = distance(site1,site2,path) returns the distance using a specified path type, either
Euclidean or great circle path.

d = distance(___ ,Name,Value) returns the distance with additional options specified by name-
value pairs.

Examples

Distance Between Transmitter and Receiver Site

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the Euclidean distance in km between the sites.

dme = distance(tx,rx)

dme = 2.1504e+04

dkm = dme / 1000

dkm = 21.5037

Get the great circle distance between the two sites.

dmg = distance(tx,rx,'greatcircle')

dmg = 2.1451e+04

Input Arguments
site1,site2 — Transmitter or receiver site
txsite or rxsite object

7 RF Propagation Objects and Methods

7-84

Transmitter or receiver site, specified as a txsite or rxsite. You can use array inputs to specify
multiple sites.

path — Measurement path type
'euclidean' | 'greatcircle'

Measurement path type, specified as one of the following:

• 'euclidean': Uses the shortest path through space that connects the antenna center positions
of the site 1 and site 2.

• 'greatcircle': Uses the shortest path on the surface of the earth that connects the latitude and
longitude locations of site 1 and site 2. This path uses a spherical Earth model.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
d — Distance between sites
M-by-N numeric array

Distance between sites, returned as M-by-N arrays in degrees. M is the number of sites in site 2 and
N is the number of sites in site 1.

 distance

7-85

See Also
angle

Introduced in R2017b

7 RF Propagation Objects and Methods

7-86

elevation
Elevation of site

Syntax
z = elevation(site)
z = elevation(___ ,Name,Value)

Description
z = elevation(site) returns the ground or building surface elevation of antenna site in meters.
Elevation is measured relative to mean sea level using earth gravitational model, EGM-96. If the site
coincides with a building, elevation is measured at the top of the building. Otherwise, elevation is
measured at the ground.

Note This function only supports antenna sites with CoordinateSystem property set to
'geographic'.

z = elevation(___ ,Name,Value) returns the ground elevation of the antenna in meters with
additional options specified by name-value pairs.

Examples

Elevation at Mount Washington

Compute and display the elevation at Mount Washington in meters.

mtwash = txsite('Name','Mt Washington','Latitude',44.2706, ...
 'Longitude',-71.3033);
z = elevation(mtwash)

z = 1.8675e+03

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 elevation

7-87

Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
z — Ground or building surface elevation of antenna site
M-by-1 matrix

Ground or building surface elevation of the antenna site, returned as an M-by-1 matrix with each
element unit in meters. M is the number of sites in site.

See Also
angle | distance | rxsite | txsite

Introduced in R2018b

7 RF Propagation Objects and Methods

7-88

hide
Hide site location on map

Syntax
hide(site)
hide(___ ,Name,Value)

Description
hide(site) hides the site location of the antenna site on a map.

Note This function only supports antenna sites with CoordinateSystem property set to
'geographic'.

hide(___ ,Name,Value) hides the site location with additional options specified by one or more
name-value pairs.

Examples

Show and Hide Transmitter Site

Create a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Show the transmitter site.

show(tx)

 hide

7-89

Hide the transmitter site.

hide(tx)

7 RF Propagation Objects and Methods

7-90

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Map','siteviewer1'

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as the comma-separated pair consisting of 'Map' and
a siteviewer object.4

Data Types: char | string

4. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 hide

7-91

See Also
show

Introduced in R2017b

7 RF Propagation Objects and Methods

7-92

link
Display communication link on map

Syntax
link(rx,tx)
link(rx,tx,propmodel)
link(___ ,Name,Value)
status = link(___)

Description
link(rx,tx) plots a one-way point-to-point communication link between a receiver site and
transmitter site. The plot is color coded to identify the link success status.

link(rx,tx,propmodel) plots the communication link based on the specified propagation model.

link(___ ,Name,Value)plots a communication link using additional options specified by
Name,Value pairs.

status = link(___) returns the success status of the communication link as true or false.

Examples

Communication Link Between Transmitter and Receiver

Create a transmitter site.

tx = txsite('Name','MathWorks', ...
 'Latitude', 42.3001, ...
 'Longitude', -71.3503);

Create a receiver site with sensitivity defined in dBm.

 rx = rxsite('Name','Boston', ...
 'Latitude', 42.3601, ...
 'Longitude', -71.0589, ...
 'ReceiverSensitivity', -90);

Plot the communication link between the transmitter and the receiver.

link(rx,tx)

 link

7-93

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can use the propagationModel
function to define this input. The default value depends on the coordinate system used by the input
sites:

Coordinate System Default propagation model value
'geographic' • 'longley-rice' when you use a terrain.

• 'freespace' when you do not use a terrain.

7 RF Propagation Objects and Methods

7-94

Coordinate System Default propagation model value
'cartesian' • 'freespace' when Map is set to none.

• 'raytracing-image-method' when Map is
set to the name of an STL file or a
triangulation object.

You can also use the name-value pair 'PropagationModel' to specify this parameter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

PropagationModel — Propagation model to use for path loss calculations
'longley-rice' (default) | 'freespace' | 'close-in' | 'rain' | 'gas' | 'fog' |
'raytracing-image-method' | propagation model object

Propagation model to use for the path loss calculations, specified as the comma-separated pair
consisting of 'PropagationModel' and one of the following:

• 'freespace' - Free space propagation model
• 'rain' - Rain propagation model
• 'gas' - Gas propagation model
• 'fog' - Fog propagation model
• 'close-in' - Close-in propagation model
• 'lonley-rice' - Longely-Rice propagation model
• 'tirem' - Tirem propagation model
• 'ray-tracing-image-method' - -Raytracing propagation model using method of images.

The default propagation model is 'longley-rice' when terrain is enabled and 'freespace' when
terrain is disabled.

Terrain propagation models including 'longley-rice' and 'tirem' are only supported for sites
with CoordinateSystem property set to 'geographic'.
Data Types: char

SuccessColor — Color of successful links
'green' (default) | RGB triplet | character vector

Color of successful links, specified as the comma-separated pair consisting of 'SuccessColor and
an RGB triplet or character vector. For more information, see ColorSpec (Color
Specification).
Data Types: char | double

FailColor — Color of unsuccessful links
'red' (default) | RGB triplet | character vector

 link

7-95

Color of unsuccessful links, specified as the comma-separated pair consisting of 'FailColor and
RGB triplet or character vector. For more information, see ColorSpec (Color Specification).
Data Types: char | double

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
status — Success status of communication link
M-by-N array

Success status of communication links, returned as an M-by-N arrays. M is the number of transmitter
sites and N is the number of receiver sites.

See Also
coverage | los | propagationModel | sigstrength | sinr

Topics
ColorSpec (Color Specification)

Introduced in R2017b

7 RF Propagation Objects and Methods

7-96

location
Location coordinates at a given distance and angle from site

Syntax
sitelocation = location(site)
[lat,lon] = location(site)
[___] = location(site,distance,azimuth)

Description
sitelocation = location(site) returns the site location of the antenna.

[lat,lon] = location(site) returns the latitude and longitude of the antenna site.

Note This syntax only supports antenna sites with CoordinateSystem property set to
'geographic'.

[___] = location(site,distance,azimuth) returns the new location achieved by moving
the antenna site by the distance specified in the direction of the azimuth angle. The location is
calculated by moving along a great circle path using a spherical Earth model.

Note This syntax only supports antenna sites with CoordinateSystem property set to
'geographic'.

Examples

Location of Antenna Site

Create a site 1 km north of a given site.

Create the first transmitter site.

tx = txsite('Name','MathWorks', ...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Calculate the location 1 km north of the first site.

[lat,lon] = location(tx,1000,90)

lat = 42.3091

lon = -71.3504

Create a second transmitter site at the location specified by lat and lon.

 location

7-97

tx2 = txsite('Name','Second transmitter', ...
 'Latitude',lat, ...
 'Longitude',lon);

Show the two transmitter sites.

show([tx,tx2])

Input Arguments
site — Antenna site
scalar | array

Antenna site, specified as a scalar or an array. It is either a txsite or a rxsite object. For more
information, see txsite, and rxsite

Note If distance or azimuth is a vector, then site must be a scalar.

distance — Distance to move antenna site
scalar | vector

Distance to move antenna site, specified as a scalar or vector in meters.

azimuth — Azimuth angle
scalar | vector

7 RF Propagation Objects and Methods

7-98

Azimuth angle, specified as a scalar or vector in degrees. Azimuth angle is measured
counterclockwise from due east.

Output Arguments
sitelocation — Location of antenna site
M-by-2 matrix

Location of antenna site, returned as an M-by-2 matrix with each element unit in degrees. M is the
number of sites in sites. The location value includes the latitude and longitude of the antenna site.

If the antenna site has the CoordinateSystem property set to 'geographic', L is a 1-by-2 vector
in degrees latitude and longitude. The output longitude wrapped so that values are in the range
[-180 180]. If SITE has CoordinateSystem set to 'cartesian', L is a 1-by-3 vector.

lat — Latitude of one or more antenna sites
M-by-1 vector

Latitude of one or more antenna sites, returned as an M-by-1 vector with each element unit in
degrees. M is the number of sites in site.

lon — Longitude of one or more antenna sites
M-by-1 matrix

Longitude of one or more antenna sites, returned as an M-by-1 matrix with each element unit in
degrees. M is the number of sites in site. The output is wrapped so that the values are in the range
[-180 180].

See Also
angle | distance | rxsite | txsite

Introduced in R2018a

 location

7-99

los
Plot or compute the line-of-sight (LOS) visibility between sites on a map

Syntax
los(site1,site2)
los(site1,site2,Name,Value)
vis = los(site1,site2,Name,Value)

Description
los(site1,site2) plots the LOS from site 1 to site 2. The plot is color coded to identify the
visibility of the points along the LOS.

los(site1,site2,Name,Value) sets properties using one or more name-value pairs. For example,
los(site1,site2,'ObstructedColor','red') plots the LOS using red to show blocked
visibility.

vis = los(site1,site2,Name,Value) returns the status of the LOS visibility.

Examples

LOS from a Transmitter Site to a Receiver Site

Plot the LOS from the MathWorks Apple Hill campus to the MathWorks Lakeside campus.

Create a transmitter site with an antenna of height 30 m.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001,'Longitude',-71.3504,'AntennaHeight',30);

Create a receiver site with an antenna at ground level.

rx = rxsite('Name','MathWorks Lakeside', ...
 'Latitude',42.3021,'Longitude',-71.3764);

Plot the LOS between the two sites.

los(tx,rx);

7 RF Propagation Objects and Methods

7-100

LOS from a Transmitter Site to Two Receiver Sites

Create a transmitter site with an antenna of height 30 m.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001,'Longitude',-71.3504,'AntennaHeight',30);

Create two receiver sites with antennas at ground level.

names = ["Fenway Park","Bunker Hill Monument"];
lats = [42.3467,42.3763];
lons = [-71.0972,-71.0611];

Create the receiver site array.

rxs = rxsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons);

Plot the lines of sight to the receiver sites. The red portion of the LOS represents obstructed visibility.

los(tx,rxs);

 los

7-101

Input Arguments
site1 — Source antenna site
txsite object | rxsite object

Source antenna site, specified as a txsite object or a rxsite object. Site 1 must be a single site
object.

site2 — Target antenna site
txsite object | rxsite object | vector of txsite or rxsite objects

Target antenna site, specified as a txsite object or a rxsite object. Site 2 can be a single site
object or a vector of multiple site objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ObstructedColor','blue'

VisibleColor — Plot color for successful visibility
'green' (default) | RGB triplet | character vector | color name string

Plot color for successful visibility, specified as an RGB triplet, a character vector, or a color name
specified as a string. For more information, see ColorSpec (Color Specification).

7 RF Propagation Objects and Methods

7-102

ObstructedColor — Plot color for blocked visibility
'red' (default) | RGB triplet | character vector | color name string

Plot color for blocked visibility, specified as an RGB triplet, a character vector, or a color name
specified as a string. For more information, see ColorSpec (Color Specification).

Resolution — Sampling distance between two sites
'auto' (default) | numeric scalar

Resolution of sample locations used to compute line-of-sight visibility, specified as 'auto' or a
numeric scalar expressed in meters. Resolution defines the distance between samples on the great
circle path using a spherical Earth model. If Resolution is 'auto', the function computes a value
based on the distance between the sites.

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
vis — Status of LOS visibility
'true' | 'false' | n-by 1 logical array

Status of LOS visibility, returned as 'true' or 'false'. If there are multiple target sites, the
function returns a logical array of n-by-1.

See Also
angle | distance | link

Topics
ColorSpec (Color Specification)

 los

7-103

Introduced in R2018a

7 RF Propagation Objects and Methods

7-104

pathloss
Path loss of radio wave propagation

Syntax
pl = pathloss(propmodel,rx,tx)
pl = pathloss(___ ,Name,Value)
[pl,info] = pathloss(___)

Description
pl = pathloss(propmodel,rx,tx) returns the path loss of radio wave propagation at the
receiver site from the transmitter site.

pl = pathloss(___ ,Name,Value) returns the path loss using additional options specified by
Name,Value pairs.

[pl,info] = pathloss(___) returns the path loss and the information about the propagation
paths.

Examples

Path Loss of Receiver In Heavy Rain

Specify the transmitter and the receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50
 Tilt: 0

Calculate the pathloss at the receiver using the rain propagation model.

pl = pathloss(pm,rx,tx)

pl = 127.1559

 pathloss

7-105

Input Arguments
propmodel — Propagation model
character vector or string

Propagation model, specified as a character vector or string.
Data Types: char

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.
Data Types: char

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Map','none'

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

7 RF Propagation Objects and Methods

7-106

Output Arguments
pl — Path loss
scalar | M-by-N arrays

Path loss, returned as a scalar or M-by-N cell arrays containing a row vector of path loss values in
decibels. M is the number of TX sites and N is the number of RX sites.

Path loss is computed along the shortest path shortest path through space connecting the transmitter
and receiver antenna centers.

For terrain propagation models, path loss is computed using terrain elevation profile that is computed
at sample locations on the great circle path between the transmitter and the receiver. If Map is a
siteviewer object with buildings specified, the terrain elevation is adjusted to include the height of
the buildings.

info — Information corresponding to each propagation path
M-by-N struct array | M-by-N cell array containing vector of structs in each cell

Information corresponding to each propagation path, returned as a M-by-N cell array containing
vector of structs in each cell for ray-tracing-image-method propagation model and M-by-N
struct array fro all other propagation models. The field and values for the structures are:

• PropagationDistance - Total distance of propagation path returned as a double scalar in
meters.

• AngleOfDeparture - Angle of departure of signal from transmitter site antenna returned as a 2-
by-1 double vector of azimuth and elevation angles in degrees.

• AngleOfArrival - Angle of arrival of signal at receiver site antenna returned as a 2-by-1 double
vector of azimuth and elevation angles in degrees.

• NumReflections - Number of reflections undergone by signal along propagation path, returned
specified as 0, 1, or 2. This field and value is only for raytrtacing-image-method.

Angle values in this structure are defined using the antenna's local East-North-Up coordinate system
when CoordinateSystem is set to geographic. Angle values in this structure are defined using
global Cartesian coordinate system when CoordinateSystem is set to cartesian. Azimuth angle is
measured either from east (when 'geographic') or from the global x-axis around the global z-axis
(when 'cartesian'). Elevation angle is measured from the horizontal (or X-Y) plane to the antenna's
x-axis in the range -90 to 90.

See Also
propagationModel | range

Introduced in R2017b

 pathloss

7-107

propagationModel
Create RF propagation model

Syntax
pm = propagationModel(modelname)
pm = propagationModel(___ ,Name,Value)

Description
pm = propagationModel(modelname) creates an RF propagation model for the specified model.

pm = propagationModel(___ ,Name,Value) updates the model using one or more name-value
pairs. For example, pm = propagationModel('rain','RainRate',96) creates a rain
propagation model with a rain rate of 96 mm/h. Enclose each property name in quotes.

Examples

Signal Strength of Receiver in Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for a heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50
 Tilt: 0

Calculate the signal strength at the receiver using the rain propagation model.

ss = sigstrength(rx,tx,pm)

ss = -87.1559

7 RF Propagation Objects and Methods

7-108

Longley-Rice Propagation Model

Create a transmitter site.

tx = txsite

tx =
 txsite with properties:

 Name: 'Site 1'
 Latitude: 42.3001
 Longitude: -71.3504
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 10
 SystemLoss: 0
 TransmitterFrequency: 1.9000e+09
 TransmitterPower: 10

Create a Longley-Rice propagation model using the propagationModel function.

pm = propagationModel('longley-rice','TimeVariabilityTolerance',0.7)

pm =
 LongleyRice with properties:

 AntennaPolarization: 'horizontal'
 GroundConductivity: 0.0050
 GroundPermittivity: 15
 AtmosphericRefractivity: 301
 ClimateZone: 'continental-temperate'
 TimeVariabilityTolerance: 0.7000
 SituationVariabilityTolerance: 0.5000

Find the coverage of the transmitter site using the defined propagation model.

coverage(tx,'PropagationModel',pm)

 propagationModel

7-109

Input Arguments
modelname — Type of propagation model
'freespace' | 'rain' | 'gas' | 'fog' | 'close-in' | 'longley-rice' | 'tirem' |
'raytracing-image-method'

Type of propagation model specified as one of these:

• 'freespace' — Free space propagation model.
• 'rain' — Rain propagation model. For more information, see [3].
• 'gas' — Gas propagation model.
• 'fog' — Fog propagation model. For more information, see [2].
• 'close-in' — Close-in propagation model typically used in urban macro-cell scenarios. For more

information, see [1].

Note The close-in model implements a statistical path loss model and can be configured for
different scenarios. The default values correspond to an urban macro-cell scenario in a non-line-of-
sight (NLOS) environment.

• 'longley-rice' — Longley-Rice propagation model. This model is also known as Irregular
Terrain Model (ITM). You can use this model to calculate point-to-point path loss between sites
over an irregular terrain, including buildings. Path loss is calculated from free-space loss, terrain
diffraction, ground reflection, refraction through atmosphere, tropospheric scatter, and
atmospheric absorption. For more information and list of limitations, see [4].

7 RF Propagation Objects and Methods

7-110

Note The Longley-Rice model implements the point-to-point mode of the model, which uses
terrain data to predict the loss between two points.

• 'tirem' — Terrain Integrated Rough Earth Model™ (TIREM™). You can use this model to
calculate point-to-point path loss between sites over an irregular terrain, including buildings. Path
loss is calculated from free-space loss, terrain diffraction, ground reflection, refraction through
atmosphere, tropospheric scatter, and atmospheric absorption. This model needs access to an
external TIREM library. The actual model is valid from 1 MHZ to 1000 GHz. But with Antenna
Toolbox elements and arrays the frequency range is limited to 200 GHz.

• 'raytracing-image-method' — The ray tracing propagation model is a multipath propagation
model that uses ray tracing analysis to compute propagation paths and their corresponding path
losses. Path loss is calculated from free-space loss, reflection loss due to material, and antenna
polarization loss. The ray tracing analysis uses the method of images, which includes surface
reflections but does not include effects from refraction, diffraction, or scattering. This model is
valid for a frequency range of 100 MHz to 100 GHz.

You can use these functions on RF propagation models:

• range — Calculate the range of the radio wave under different propagation scenarios. Therange
function does not support Longley-Rice, TIREM or 'raytracing-image-method' propagation
models.

• pathloss — Calculate the path loss of radio wave propagation between the transmitter and
receiver sites under different propagation scenarios.

• add — Add propagation models.

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RainRate',50. Sets the rate of rainfall in the rain propagation model to 40.

Rain

RainRate — Rain rate
16 (default) | nonnegative scalar

Rain rate, specified as a nonnegative scalar in millimeters per hour (mm/h).

Dependencies

To specify 'RainRate', you must specify 'rain' propagation model.
Data Types: double

Tilt — Polarization tilt angle of signal
0 (default) | scalar

Polarization tilt angle of the signal, specified as a scalar in degrees.

Dependencies

To specify 'Tilt', you must specify 'rain' propagation model.

 propagationModel

7-111

Data Types: double

Gas

Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in Celsius (C).

Dependencies

To specify 'Temperature', you must specify 'gas' propagation model.
Data Types: double

AirPressure — Dry air pressure
101300 (default) | scalar

Dry air pressure, specified as a scalar in pascals (Pa).

Dependencies

To specify 'AirPressure', you must specify 'gas' propagation model.
Data Types: double

WaterDensity — Water vapor density
7.5 (default) | scalar

Water vapor density, specified as a scalar in grams per cubic meter (g/m3).

Dependencies

To specify 'WaterDensity', you must specify 'gas' propagation model.
Data Types: double

Fog

Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in Celsius (C).

Dependencies

To specify 'Temperature', you must specify 'fog' propagation model.
Data Types: double

WaterDensity — Liquid water density
0.5 (default) | scalar

Liquid water density, specified as a scalar in grams per cubic meter (g/m3).

Dependencies

To specify 'WaterDensity', you must specify 'fog' propagation model.
Data Types: double

7 RF Propagation Objects and Methods

7-112

Close-In

ReferenceDistance — Free-space reference distance
1 (default) | scalar

Free-space reference distance, specified as a scalar in meters.

Dependencies

To specify 'ReferenceDistance', you must specify the 'close-in' propagation model.
Data Types: double

PathLossExponent — Path loss exponent
2.9 (default) | scalar

Path loss exponent, specified as a scalar.

Dependencies

To specify 'PathLossExponent', you must specify 'close-in' propagation model.
Data Types: double

Sigma — Standard deviation
5.7 (default) | scalar

Standard deviation of the zero-mean Gaussian random variable, specified as a scalar in decibels (dB).

Dependencies

To specify 'Sigma', you must specify 'close-in' propagation model.
Data Types: double

NumDataPoints — Number of data points
1869 (default) | integer

Number of data points of zero-mean Gaussian random variable, specified as an integer.

Dependencies

To specify 'NumDataPoints', you must specify 'close-in' propagation model.
Data Types: double

Note The close-in model is valid for distances greater than or equal to the 'ReferenceDistance'
property. If a distance less than the 'ReferenceDistance' is used, path loss is 0.

Longley-Rice

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of transmitter and receiver antennas, specified as 'horizontal' or 'vertical'. Both
antennas are assumed to have the same polarization. This value is used to calculate path loss due to
ground reflection.

 propagationModel

7-113

Dependencies

To specify 'AntennaPolarization', you must specify 'longley-rice' propagation model.
Data Types: char | string

GroundConductivity — Conductivity of ground
0.005 (default) | scalar

Conductivity of the ground, specified as a scalar in Siemens per meter (S/m). This value is used to
calculate path loss due to ground reflection. The default value corresponds to average ground.
Dependencies

To specify 'GroundConductivity', you must specify 'longley-rice' propagation model.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | scalar

Relative permittivity of the ground, specified as a scalar. Relative permittivity is expressed as a ratio
of absolute material permittivity to the permittivity of vacuum. This value is used to calculate the path
loss due to ground reflection. The default value corresponds to average ground.
Dependencies

To specify 'GroundPermittivity', you must specify 'longley-rice' propagation model.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | scalar

Atmospheric refractivity near the ground, specified as a scalar in N-units. This value is used to
calculate the path loss due to refraction through the atmosphere and tropospheric scatter. The
default value corresponds to average atmospheric conditions.
Dependencies

To specify 'AtmosphericRefractivity', you must specify 'longley-rice' propagation model.
Data Types: double

ClimateZone — Radio climate zone
'continental-temperate' (default) | 'equatorial' | 'continental-subtropical' |
'maritime-subtropical' | 'desert' | 'maritime-over-land' | 'maritime-over-sea'

Radio climate zone. This value is used to calculate the variability due to changing atmospheric
conditions. The default value corresponds to average atmospheric conditions in a particular climate
zone.
Dependencies

To specify 'ClimateZone', you must specify 'longley-rice' propagation model.
Data Types: char | string

TimeVariabilityTolerance — Time variability tolerance level
0.5 (default) | scalar

7 RF Propagation Objects and Methods

7-114

Time variability tolerance level of the path loss, specified as a scalar between [0.001, 0.999]. Time
variability occurs due to changing atmospheric conditions. This value gives the required system
reliability or the fraction of time during which the actual path loss is expected to be less than or equal
to model prediction. For more information, see [5].
Dependencies

To specify 'TimeVariabilityTolerance', you must specify 'longley-rice' propagation model.
Data Types: double

SituationVariabilityTolerance — Situation variability tolerance level
0.5 (default) | scalar

Situation variability tolerance level of the path loss, specified as a scalar in between [0.001, 0.999].
Situation variability occurs due to uncontrolled or hidden random variables. This value gives the
required system confidence or the fraction of similar situations for which the actual path loss is
expected to be less than or equal to the model prediction. For more information, see [5].
Dependencies

To specify 'SituationVariabilityTolerance', you must specify 'longley-rice' propagation
model.
Data Types: double

TIREM

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of transmitter and receiver antennas, specified as 'horizontal' or 'vertical'. Both
antennas are assumed to have the same polarization. This value is used to calculate path loss due to
ground reflection.
Dependencies

To specify 'AntennaPolarization', you must specify 'tirem' propagation model.
Data Types: char | string

GroundConductivity — Conductivity of ground
0.005 (default) | numeric scalar

Conductivity of the ground, specified as a numeric scalar in Siemens per meter (S/m) in the range of
0.0005 to 100. This value is used to calculate path loss due to ground reflection. The default value
corresponds to average ground.
Dependencies

To specify 'GroundConductivity', you must specify 'tirem' propagation model.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | numeric scalar

Relative permittivity of the ground, specified as a numeric scalar in the range of 1 to 100. Relative
permittivity is expressed as a ratio of absolute material permittivity to the permittivity of vacuum.

 propagationModel

7-115

This value is used to calculate the path loss due to ground reflection. The default value corresponds
to average ground.

Dependencies

To specify 'GroundPermittivity', you must specify 'tirem' propagation model.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | scalar

Atmospheric refractivity near the ground, specified as a numeric scalar in N-units in the range of 250
to 400. This value is used to calculate the path loss due to refraction through the atmosphere and
tropospheric scatter. The default value corresponds to average atmospheric conditions.

Dependencies

To specify 'AtmosphericRefractivity', you must specify 'tirem' propagation model.
Data Types: double

Humidity — Absolute air humidity near ground
'9' (default) | numeric scalar

Absolute air humidity near ground,specified as a numeric scalar in g/m^3 units in the range of 0 to
110. You can use this value to calculate path loss due to atmospheric absorption. The default value
corresponds to the absolute humidity of air at 15 degrees Celsius and 70 percent relative humidity.

Dependencies

To specify 'Humidity', you must specify 'tirem' propagation model.
Data Types: double

raytracing-image-method

MaxNumReflections — Maximum number of path reflections
1 (default) | 0 | 2

Maximum number of reflections in the propagation paths to search for using ray tracing, specified as
0, 1, or 2. The default value results in a search for a line-of-sight propagation path along with
propagation paths that each contain a single reflection.

Dependencies

To specify 'MaxNumReflections', you must specify 'raytracing-image-method' propagation
model.
Data Types: double

CoordinateSystem — Coordinate system of map and site location
'geographic' (default) | 'cartesian'

Coordinate system of the site location, specified as 'geographic' or 'cartesian'. If you specify
'geographic', material types are defined using 'BuildingMaterial' or 'TerrainMaterial'
properties. If you specify 'cartesian', material types are defined using the 'SurfaceMaterial'
properties.

7 RF Propagation Objects and Methods

7-116

Data Types: string | char

BuildingsMaterial — Surface material of geographic buildings
'concrete' (default) | 'perfect-reflector' | 'brick' | 'wood' | 'glass' | 'metal' |
'custom'

Surface material of geographic buildings, specified as one of these: 'perfect-reflector',
'concrete', 'brick', 'wood', 'glass', 'metal', or 'custom'. The material type is used to
calculate reflection loss where propagation paths reflect off of building surfaces. For more
information, see “ITU Permittivity and Conductivity Values for Common Materials” on page 7-119.

When 'BuildingsMaterial' is set to 'custom', the material permittivity and conductivity are
specified in the BuildingsMaterialPermittivity and BuildingsMaterialConductivity
properties.
Dependencies

To specify 'BuildingsMaterials', you must set 'CoordinateSystem' to 'geographic'.
Data Types: char | string

BuildingsMaterialPermittivity — Relative permittivity of buildings surface materials
5.31 (default) | nonnegative scalar

Relative permittivity of the buildings surface material, specified as a nonnegative scalar. Relative
permittivity is expressed as a ratio of absolute material permittivity to the permittivity of vacuum.
This value is used to calculate path loss due to reflection. The default value corresponds to concrete
at 1.9 GHz.
Dependencies

To specify 'BuildingsMaterialPermittivity', you must set 'CoordinateSystem' to
'geographic' and 'BuildingsMaterial' to 'custom'.
Data Types: double

BuildingsMaterialConductivity — Conductivity of buildings surface materials
0.0548 (default) | nonnegative scalar

Conductivity of the buildings surface material, specified as a nonnegative scalar in Siemens per meter
(S/m). This value is used to calculate path loss due to reflection. The default value corresponds to
concrete at 1.9 GHz.
Dependencies

To specify 'BuildingsMaterialConductivity', you must set 'CoordinateSystem' to
'geographic' and 'BuildingsMaterial' to 'custom'.
Data Types: double

TerrainMaterial — Surface material of geographic terrain
'concrete' (default) | 'perfect-reflector' | 'brick' | 'water' | 'vegetation' | 'loam' |
'custom'

Surface material of terrain, specified as one of these: 'perfect-reflector', 'concrete',
'brick', 'water', 'vegetation', 'loam', or 'custom'. The material type is used to calculate
reflection loss where propagation paths reflect off of terrain surfaces. For more information, see “ITU
Permittivity and Conductivity Values for Common Materials” on page 7-119.

 propagationModel

7-117

When 'TerrainMaterial' is set to 'custom', the material permittivity and conductivity are
specified in the 'TerrainMaterialPermittivity' and 'TerrainMaterialConductivity'
properties.

Dependencies

To specify 'TerrainMaterial', you must set 'CoordinateSystem' to 'geographic'.
Data Types: char | string

TerrainMaterialPermittivity — Relative permittivity of terrain materials
5.31 (default) | nonnegative scalar

Relative permittivity of the terrain material, specified as a nonnegative scalar. Relative permittivity is
expressed as a ratio of absolute material permittivity to the permittivity of vacuum. This value is used
to calculate path loss due to reflection. The default value corresponds to concrete at 1.9 GHz.

Dependencies

To specify 'TerrainMaterialPermittivity', you must set 'CoordinateSystem' to
'geographic' and 'TerrainMaterial' to 'custom'.
Data Types: double

TerrainMaterialConductivity — Conductivity of terrain materials
0.0548 (default) | nonnegative scalar

Conductivity of the terrain material, specified as a nonnegative scalar in Siemens per meter (S/m).
This value is used to calculate path loss due to reflection. The default value corresponds to concrete
at 1.9 GHz.

Dependencies

To specify 'TerrainMaterialConductivity ', you must set 'CoordinateSystem' to
'geographic' and set 'TerrainMaterial' to 'custom'.
Data Types: double

SurfaceMaterial — Surface material of Cartesian map surface
'plasterboard' (default) | 'perfect-reflector' | 'ceilingboard' | 'chipboard' |
'floorboard' | 'concrete' | 'brick' | 'wood' | 'glass' | 'metal' | 'water' |
'vegetation' | 'loam' | 'custom'

Surface material of Cartesian map surface, specified as one of these: 'plasterboard','perfect-
reflector', 'ceilingboard', 'chipboard', 'floorboard', 'concrete', 'brick', wood,
'glass', 'metal', 'water', 'vegetation', 'loam', or 'custom'. The material type is used to
calculate reflection loss where propagation paths reflect off of surfaces. For more information, see
“ITU Permittivity and Conductivity Values for Common Materials” on page 7-119.

When 'SurfaceMaterial' is set to 'custom', the material permittivity and conductivity are
specified in the 'SurfaceMaterialPermittivity' and 'SurfaceMaterialConductivity'
properties.

Dependencies

To specify 'SurfaceMaterial', you must set 'CoordinateSystem' to 'cartesian'.
Data Types: char | string

7 RF Propagation Objects and Methods

7-118

SurfaceMaterialPermittivity — Relative permittivity of surface materials
2.94 (default) | nonnegative scalar

Relative permittivity of the surface material, specified as a nonnegative scalar. Relative permittivity is
expressed as a ratio of absolute material permittivity to the permittivity of vacuum. This value is used
to calculate path loss due to reflection. The default value corresponds to plaster board at 1.9 GHz.

Dependencies

To specify 'SurfaceMaterialPermittivity', you must set 'CoordinateSystem' to
'cartesian' and 'SurfaceMaterial' to 'custom'.
Data Types: double

SurfaceMaterialConductivity — Conductivity of surface materials
0.0183 (default) | nonnegative scalar

Conductivity of the surface material, specified as a nonnegative scalar in Siemens per meter (S/m).
This value is used to calculate path loss due to reflection. The default value corresponds to plaster
board at 1.9 GHz.

Dependencies

To specify 'SurfaceMaterialConductivity ', you must set 'CoordinateSystem' to
'cartesian' and set 'SurfaceMaterial' to 'custom'.
Data Types: double

More About
N-Units

The refractive index of air n is related to the dielectric constants of the gas constituents of an air
mixture. The numerical value of n is only slightly larger than one. To make the calculation more
convenient, you can use N units, which are given by the formula: N = (n− 1) × 106

ITU Permittivity and Conductivity Values for Common Materials

ITU-R P.2040-1 [8] and ITU-R P.527-5 [9] present methods, equations, and values used to calculate
real relative permittivity, conductivity, and complex relative permittivity for the common materials.

• For information about the values computed for building materials specified in ITU-R P.2040-1, see
buildingMaterialPermittivity.

• For information about the values computed for terrain materials specified in ITU-R P.527-5, see
earthSurfacePermittivity.

References
[1] Sun, S.,Rapport, T.S., Thomas, T., Ghosh, A., Nguyen, H., Kovacs, I., Rodriguez, I., Koymen, O.,and

Prartyka, A. "Investigation of prediction accuracy, sensitivity, and parameter stability of large-
scale propagation path loss models for 5G wireless communications." IEEE Transactions on
Vehicular Technology, Vol.65, No 5, pp 2843-2860, May 2016.

[2] ITU-R P.840-6. "Attenuation due to cloud and fog." Radiocommunication Sector of ITU

 propagationModel

7-119

[3] ITU-R P.838-3. "Specific attenuation model for rain for use in prediction methods."
Radiocommunication Sector of ITU

[4] Hufford, George A., Anita G. Longley, and William A.Kissick. "A Guide to the Use of the ITS
Irregular Terrain Model in the Area Prediction Mode." NTIA Report 82-100. Pg-7.

[5] SoftWright Homepage https://www.softwright.com/faq/support/longley_rice_variability.html

[6] Seybold, John. Introduction to RF Propagation. Wiley, 2005

[7] ITU-R P.676-11. "Attenuation by atmospheric gases." Radiocommunication Sector of ITU

[8] ITU-R P.2040-1. "Effects of Building Materials and Structures on Radiowave Propagation Above
100MHz." International Telecommunications Union - Radiocommunications Sector (ITU-R).
July 2015.

[9] ITU-R P.527-5. "Electrical characteristics of the surface of the Earth." International
Telecommunications Union - Radiocommunications Sector (ITU-R). August 2019.

See Also
coverage | link | los | pathloss | range | sigstrength | sinr | tiremSetup | tirempl

Topics
“Access TIREM Software”

Introduced in R2017b

7 RF Propagation Objects and Methods

7-120

range
Range of radio wave propagation

Syntax
r = range(propmodel,tx,pl)

Description
r = range(propmodel,tx,pl)returns the range of radio wave propagation from the transmitter
site.

Examples

Range of Transmitter In Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504, ...
 'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park',...
 'Latitude',42.3467, ...
 'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm =
 Rain with properties:

 RainRate: 50
 Tilt: 0

Calculate the range of transmitter using the rain propagation model and a path loss of 127 dB.

r = range(pm,tx,127)

r = 2.0747e+04

Input Arguments
propmodel — Propagation model
character vector or string

Propagation model, specified as a character vector or string.

 range

7-121

Data Types: char

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.
Data Types: char

pl — Path loss
scalar

Path loss, specified as a scalar in decibels.
Data Types: double

Output Arguments
r — range
scalar | M-by-1 arrays

Range, returned as a scalar or M-by-1 array with each element in meters. M is the number of TX
sites.

Range is the maximum distance for which the path loss does not exceed the value of specified pl.

See Also
pathloss | propagationModel

Introduced in R2017b

7 RF Propagation Objects and Methods

7-122

removeCustomTerrain
Remove custom terrain data

Syntax
removeCustomTerrain(terrainName)

Description
removeCustomTerrain(terrainName) removes the custom terrain data specified by the user-
defined terrainName. You can use this function to remove terrain data that is no longer needed. The
terrain data to be removed must have been previously added using addCustomTerrain.

Examples

Site Viewer Maps Using Custom Terrain

Add terrain for a region around Boulder, CO. The DTED file was downloaded from the "SRTM Void
Filled" data set available from the U.S. Geological Survey.

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available " + ...
 "from the U.S. Geological Survey.";
addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Use the custom terrain name in Site Viewer.

viewer = siteviewer("Terrain","southboulder");

 removeCustomTerrain

7-123

Create a site with the terrain region.

mtzion = txsite("Name","Mount Zion", ...
 "Latitude",39.74356, ...
 "Longitude",-105.24193, ...
 "AntennaHeight", 30);
show(mtzion)

7 RF Propagation Objects and Methods

7-124

Create a coverage map of the area within 20 km of the transmitter site.

coverage(mtzion, ...
 "MaxRange",20000, ...
 "SignalStrengths",-100:-5)

 removeCustomTerrain

7-125

Remove the custom terrain.

close(viewer)
removeCustomTerrain("southboulder")

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data previously added using addCustomTerrain, specified as a
string scalar or a character vector.
Data Types: char | string

See Also
addCustomTerrain | siteviewer

Introduced in R2019a

7 RF Propagation Objects and Methods

7-126

pattern
Plot antenna radiation pattern on map

Syntax
pattern(tx)
pattern(rx,frequency)
pattern(___ ,Name,Value)

Description
pattern(tx) plots the 3-D antenna radiation pattern for the transmitter site, txsite. Signal gain
value (dBi) in a particular direction determines the color of the pattern.

Note This function only supports antenna sites with CoordinateSystem property set to
'geographic'.

pattern(rx,frequency) plots the 3-D radiation pattern for the receiver site, rxsite for the
specified frequency.

pattern(___ ,Name,Value) plots the 3-D radiation pattern with additional options specified by
name-value pair arguments.

Examples

Single Transmitter Site Pattern

Define and visualize the radiation pattern of a single transmitter site.

tx = txsite;
pattern(tx)

 pattern

7-127

Single Receiver Site Pattern

Design a receiver site using a dipole antenna at a height of 30 meters.

 d = dipole;
 rx= rxsite('Name','Mathworks Lakeside','Latitude',42.30321,'Longitude',-71.3764,...
 'Antenna',d,'AntennaHeight',30)

rx =
 rxsite with properties:

 Name: 'Mathworks Lakeside'
 Latitude: 42.3032
 Longitude: -71.3764
 Antenna: [1×1 dipole]
 AntennaAngle: 0
 AntennaHeight: 30
 SystemLoss: 0
 ReceiverSensitivity: -100

 show(rx)

7 RF Propagation Objects and Methods

7-128

Visualize the pattern of the receiver site at 75 MHz.

pattern(rx,75e6)

 pattern

7-129

Pattern for Directional Transmitter and Receiver

Create directional antenna.

yagiAntenna = design(yagiUda,4.5e9);
yagiAntenna.Tilt = 90;
yagiAntenna.TiltAxis = 'y';

Create transmitter and receiver sites at a frequency of 4.5 GHz. Use the Yagi antenna as the
transmitter antenna. Design a dipole at 4.5 GHz and use this as the receiver antenna.

fq = 4.5e9;
tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude', -71.3503, ...
 'Antenna', yagiAntenna,'AntennaAngle', 90,'AntennaHeight', 30, ...
 'TransmitterFrequency', fq,'TransmitterPower', 10);
rx = rxsite('Antenna',design(dipole, fq));

Position the receiver 200 meters from the transmitter.

 [lat,lon] = location(tx,200,90);
 rx.Latitude = lat;
 rx.Longitude = lon;

Display both transmitter and receiver patterns.

7 RF Propagation Objects and Methods

7-130

pattern(tx,'Transparency',0.2);
pattern(rx, fq);

Input Arguments
tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object.

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object.

frequency — Frequency to calculate radiation pattern
positive scalar

Frequency to calculate radiation pattern, specified as a positive scalar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Size',2

 pattern

7-131

Size — Size of pattern plot
50 (default) | numerical scalar

Size of the pattern plot, specified as the comma-separated pair consisting of 'Size' and a numerical
scalar in meters. This parameter represents the distance between the antenna position and the point
on the plot with the highest gain.
Data Types: double

Transparency — Transparency of pattern plot
0.4 (default) | real number in the range of [0,1]

Transparency of the pattern plot, specified as the comma-separated pair consisting of
'Transparency' and a real number in the range of [0,1], where 0 is completely transparent and 1 is
completely opaque.
Data Types: double

Colormap — Colormap for coloring of pattern plot
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for coloring of the pattern plot, specified as the comma-separated pair consisting of
'Colormap' and predefined colormap name or an M-by-3 array of RGB (red, blue, green) triplets
that define M individual colors.
Data Types: double

Resolution — Resolution of 3-D pattern
'high' (default) | 'low' | '

Resolution of 3-D map, specified as the comma-separated pair consisting of 'Resolution' and
'low', 'medium', or 'high'. This property controls the visual quality and the time taken to plot the
pattern where the value of 'low' corresponds to the fastest and the least detailed pattern.
Data Types: double

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as the comma-separated pair consisting of 'Map' and
a siteviewer object.5

Data Types: char | string

See Also
coverage

Introduced in R2018b

5. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

7 RF Propagation Objects and Methods

7-132

show
Show site location on map

Syntax
show(site)
show(site,Name,Value)

Description
show(site) displays the location of transmitter or receiver site on a map using a marker.

Note This function only supports antenna sites with CoordinateSystem property set to
'geographic'.

show(site,Name,Value) displays site on a map with additional options specified by one or more
Name-Value pairs.

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx =
 rxsite with properties:

 Name: 'Site 2'
 Latitude: 42.3021
 Longitude: -71.3764
 Antenna: 'isotropic'
 AntennaAngle: 0
 AntennaHeight: 1
 SystemLoss: 0
 ReceiverSensitivity: -100

show(rx)

 show

7-133

Show and Hide Transmitter Site

Create a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
 'Latitude',42.3001, ...
 'Longitude',-71.3504);

Show the transmitter site.

show(tx)

7 RF Propagation Objects and Methods

7-134

Hide the transmitter site.

hide(tx)

 show

7-135

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ClusterMarkers',true

Icon — Image file
character vector

Image file, specified as a character vector.
Data Types: char

IconSize — Width and height of icon
36-by-36 (default) | 1-by-2 vector of positive numeric values

Width and height of the icon, specified as a 1-by-2 vector of positive numeric values in pixels.

7 RF Propagation Objects and Methods

7-136

IconAlignment — Vertical position of icon relative to site
'top' (default) | 'center' | 'bottom'

Vertical position of icon relative to site, specified as:

• 'bottom - Aligns the icon below the site antenna position.
• 'center' - Aligns the center of the icon to the site antenna position.
• 'top' - Aligns the icon above the site antenna position.

ClusterMarkers — Combine nearby markers into groups or clusters
true | false

Combine nearby markers into groups or clusters, specified as true or false.
Data Types: char

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as the comma-separated pair consisting of 'Map' and
a siteviewer object.6

Data Types: char | string

See Also
hide

Introduced in R2017b

6. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 show

7-137

sigstrength
Signal strength due to transmitter

Syntax
ss = sigstrength(rx,tx)
ss = sigstrength(rx,tx,propmodel)
ss = sigstrength(___ ,Name,Value)

Description
ss = sigstrength(rx,tx) returns the signal strength at the receiver site due to the transmitter
site.

ss = sigstrength(rx,tx,propmodel) returns the signal strength at the receiver site using the
specified propagation model. Specifying propagation model is same as specifying the
'PropagationModel' name-value pair.

ss = sigstrength(___ ,Name,Value) returns the signal strength using additional options
specified by Name,Value pairs and either of the previous syntaxes.

Examples

Received Power and Link Margin at Receiver

Create a transmitter site.

tx = txsite('Name','Fenway Park', ...
 'Latitude', 42.3467, ...
 'Longitude', -71.0972);

Create a receiver site with sensitivity defined (in dBm).

 rx = rxsite('Name','Bunker Hill Monument', ...
 'Latitude', 42.3763, ...
 'Longitude', -71.0611, ...
 'ReceiverSensitivity', -90);

Calculate the received power and link margin. Link margin is the difference between the receiver's
sensitivity and the received power.

ss = sigstrength(rx,tx)

ss = -71.1414

margin = abs(rx.ReceiverSensitivity - ss)

margin = 18.8586

7 RF Propagation Objects and Methods

7-138

Signal Strength Using Ray Tracing Image Method Propagation Model

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 7-0 .

viewer = siteviewer("Buildings","chicago.osm");

Create transmitter site on a building.

tx = txsite('Latitude',41.8800, ...
 'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);

Create receiver site near another building.

rx = rxsite('Latitude',41.881352, ...
 'Longitude',-87.629771, ...
 'AntennaHeight',30);

Compute signal strength using ray tracing propagation model and default single-reflection analysis.

pm = propagationModel("raytracing-image-method");
ssOneReflection = sigstrength(rx,tx,pm)

 sigstrength

7-139

ssOneReflection = -54.0915

Compute signal strength with analysis up to two reflections, where total received power is the
cumulative power of all propagation paths

pm.MaxNumReflections = 2;
ssTwoReflections = sigstrength(rx,tx,pm)

ssTwoReflections = -52.3890

Observe effect of material by replacing default concrete material with perfect reflector.

pm.BuildingsMaterial = 'perfect-reflector';
ssPerfect = sigstrength(rx,tx,pm)

ssPerfect = -41.9927

Plot propagation paths.

raytrace(tx, rx, pm)

7 RF Propagation Objects and Methods

7-140

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can use the propagationModel
function to define this input. The default value depends on the coordinate system used by the input
sites:

Coordinate System Default propagation model value
'geographic' • 'longley-rice' when you use a terrain.

• 'freespace' when you do not use a terrain.
'cartesian' • 'freespace' when Map is set to none.

• 'raytracing-image-method' when Map is
set to the name of an STL file or a
triangulation object.

You can also use the name-value pair 'PropagationModel' to specify this parameter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of signal strength to compute
'power' (default) | 'efield'

Type of signal strength to compute, specified as the comma-separated pair consisting of 'Type and
'power' or 'efield'.

When type is 'power', signal strength is expressed in power units (dBm) of the signal at the mobile
receiver input. When type is 'efield', signal strength is expressed in electric field strength units
(dBμV/m) of signal wave incident on the antenna.

 sigstrength

7-141

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Data Types: char | string

PropagationModel — Propagation model to use for path loss calculations
'longley-rice' (default) | 'freespace' | 'close-in' | 'rain' | 'gas' | 'fog' |
'raytracing-image-method' | propagation model object

Propagation model to use for the path loss calculations, specified as the comma-separated pair
consisting of 'PropagationModel' and one of the following:

• 'freespace' - Free space propagation model
• 'rain' - Rain propagation model
• 'gas' - Gas propagation model
• 'fog' - Fog propagation model
• 'close-in' - Close-in propagation model
• 'longley-rice' - Longley-Rice propagation model
• 'tirem' - Tirem propagation model
• 'raytracing-image-method' - -Raytracing propagation model using method of images.

The default propagation model is 'longley-rice' when terrain is enabled and 'freespace' when
terrain is disabled.

Terrain propagation models including 'longley-rice' and 'tirem' are only supported for sites
with CoordinateSystem property set to 'geographic'.
Data Types: char

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

7 RF Propagation Objects and Methods

7-142

Output Arguments
ss — Signal strength
M-by-N array

Signal strength, returned as M-by-N array in dBm. M is the number of TX sites and N is the number
of RX sites.

See Also
link | propagationModel | sinr

Introduced in R2017b

 sigstrength

7-143

sinr
Display signal-to-interference-plus-noise ratio (SINR) map

Syntax
sinr(txs)
sinr(txs,propmodel)
sinr(___ ,Name,Value)
pd = sinr(txs, ___)
r = sinr(rxs,txs, ___)

Description
sinr(txs) displays the signal-to-interference-plus-noise ratio (SINR) for transmitter sites, txs. The
map contours are generated using SINR values computed for receiver site locations on the map. For
each location, the signal source is the transmitter site in TXS with the greatest signal strength. The
remaining transmitter sites in txs with the same transmitter frequency act as sources of
interference. If txs is scalar or there are no sources of interference the resultant map displays
signal-to-noise ratio (SNR).

sinr(txs,propmodel) displays the SINR map with the propagation model set to the value in
propmodel.

sinr(___ ,Name,Value) sets properties using one or more name-value pairs, in addition to the
input arguments in previous syntaxes. For example, sinr(txs,'MaxRange',8000) sets the range
from the site location at 8000 meters to include in the SINR map region.

pd = sinr(txs, ___) returns computed SINR data in the propagation data object, pd. No plot is
displayed and any graphical only name-value pairs are ignored.

r = sinr(rxs,txs, ___) returns the sinr in dB computed at the receiver sites due to the
transmitter sites.

Examples

SINR Map for Multiple Transmitters

Define names and location of sites in Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create a transmitter site array.

txs = txsite('Name', names,...
 'Latitude',lats,...
 'Longitude',lons, ...
 'TransmitterFrequency',2.5e9);

7 RF Propagation Objects and Methods

7-144

Display the SINR map, where signal source for each location is selected as the transmitter site with
the strongest signal.

sinr(txs)

Input Arguments
txs — Transmitter sites
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
'geographic'.

rxs — Receiver sites
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
'geographic'.

 sinr

7-145

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can use the propagationModel
function to define this input. The default value depends on the coordinate system used by the input
sites:

Coordinate System Default propagation model value
'geographic' • 'longley-rice' when you use a terrain.

• 'freespace' when you do not use a terrain.
'cartesian' • 'freespace' when Map is set to none.

• 'raytracing-image-method' when Map is
set to the name of an STL file or a
triangulation object.

You can also use the name-value pair 'PropagationModel' to specify this parameter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxRange',8000

General

SignalSource — Signal source of interest
'strongest' (default) | transmitter site object

Signal source of interest, specified as the comma-separated pair consisting of SignalSource and
'strongest' or as a transmitter site object. When the signal source of interest is 'strongest', the
transmitter with the greatest signal strength is chosen as the signal source of interest for that
location. When computing sinr, SignalSource can be a txsite array with equal number of
elements rxs where each transmitter site element defines the signal source for the corresponding
receiver site.

PropagationModel — Propagation model to use for path loss calculations
'longley-rice' (default) | 'freespace' | 'close-in' | 'rain' | 'gas' | 'fog' |
'raytracing-image-method' | propagation model object

Propagation model to use for the path loss calculations, specified as the comma-separated pair
consisting of 'PropagationModel' and one of the following:

• 'freespace' - Free space propagation model
• 'rain' - Rain propagation model
• 'gas' - Gas propagation model
• 'fog' - Fog propagation model
• 'close-in' - Close-in propagation model
• 'longley-rice' - Longley-Rice propagation model
• 'tirem' - Tirem propagation model

7 RF Propagation Objects and Methods

7-146

• 'raytracing-image-method' - -Raytracing propagation model using method of images.

The default propagation model is 'longley-rice' when terrain is enabled and 'freespace' when
terrain is disabled. If 'raytracing-image-method' is specified, the value of
'MaxNumReflections' property must be lesser than 1.

Terrain propagation models including 'longley-rice' and 'tirem' are only supported for sites
with CoordinateSystem property set to 'geographic'.
Data Types: char

ReceiverNoisePower — Total noise power at receiver
-107 (default) | scalar

Total noise power at receiver, specified as the comma-separated pair consisting of
'ReceiverNoisePower' and a scalar in dBm. The default value assumes that the receiver
bandwidth is 1 MHz and receiver noise figure is 7 dB.

N = − 174 + 10 * log(B) + F

where,

• N = Receiver noise in dBm
• B = Receiver bandwidth in Hz
• F = Noise figure in dB

ReceiverGain — Receiver gain
2.1 (default) | scalar

Mobile receiver gain, specified as the comma-separated pair consisting of 'ReceiverGain' and a
scalar in dB. The receiver gain values include the antenna gain and the system loss. If you call the
function using an output argument, the default value is computed using rxs.

ReceiverAntennaHeight — Receiver antenna height
1 (default) | scalar

Receiver antenna height above the ground, specified as the comma-separated pair consisting of
'ReceiverAntennaHeight' and a scalar in meters. If you call the function using an output
argument, the default value is computed using rxs.

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

 sinr

7-147

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

For Plotting SINR

Values — Values of SINR for display
[-5:20] (default) | numeric vector

Values of SINR for display, specified as the comma-separated pair consisting of 'Values' and a
numeric vector. Each value is displayed as a different colored, filled on the contour map. The contour
colors are derived using Colormap and ColorLimits.

MaxRange — Maximum range of coverage map from each transmitter site
numeric scalar

Maximum range of coverage map from each transmitter site, specified as a positive numeric scalar in
meters representing great circle distance. MaxRange defines the region of interest on the map to
plot. The default value is automatically computed based on the propagation model type as shown:

Propagation Model MaxRange
Basic or urban 30 km
Terrain 30 km or distance to the furthest building.
Multipath 500 m

Data Types: double

Resolution — Resolution of receiver site locations used to compute SINR values
'auto' (default) | numeric scalar

Resolution of receiver site locations used to compute SINR values, specified as the comma-separated
pair consisting of 'Resolution' and 'auto' or a numeric scalar in meters. The resolution defines
the maximum distance between the locations. If the resolution is 'auto', sinr computes a value
scaled to MaxRange. Decreasing the resolution increases the quality of the SINR map and the time
required to create it.

Colormap — Colormap for coloring filled contours
'jet' (default) | M-by-3 array of RGB triplets

7 RF Propagation Objects and Methods

7-148

Colormap for coloring filled contours, specified as the comma-separated pair consisting of
'ColorMap' and an M-by-3 array of RGB triplets, where M is the number of individual colors.

ColorLimits — Color limits for color maps
[-5 20] (default) | two-element vector

Color limits for color maps, specified as the comma-separated pair consisting of 'ColorLimits' and
a two-element vector of the form [min max]. The color limits indicate the SINR values that map to the
first and last colors in the colormap.

ShowLegend — Show signal strength color legend on map
'true' (default) | 'false'

Show signal strength color legend on map, specified as the comma-separated pair consisting of
'ShowLegend' and 'true' or 'false'.

Transparency — Transparency of SINR map
0.4 (default) | numeric scalar

Transparency of SINR map, specified as the comma-separated pair consisting of 'Transparency'
and a numeric scalar in the range 0–1. If the value is zero, the map is completely transparent. If the
value is one, the map is completely opaque.

Output Arguments
r — Signal to interference plus noise ratio at the receiver
numeric vector (default)

Signal to interference plus noise ratio at the receiver due to the transmitter sites, returned as a
numeric vector. The vector length is equal to the number of receiver sites.
Data Types: double

pd — SINR data
propagationData object

SINR data, returned as a propagationData object consisting of Latitude and Longitude, and a
signal strength variable corresponding to the plot type. Name of the propagationData is "SINR
Data".

Note This function only supports plotting for antenna sites with CoordinateSystem property set to
'geographic'.

See Also
coverage | propagationModel

Introduced in R2018a

 sinr

7-149

tirempl
Path loss using Terrain Integrated Rough Earth Model (TIREM)

Syntax
pl = tirempl(r,z,f)
pl = tirempl(r,z,f,Name,Value)
[pl,output] = tirempl(___)

Description
pl = tirempl(r,z,f) returns the path loss in dB for a signal with frequency f when it is
propagated over terrain. You can specify terrain using numeric vectors for distance r and elevation z
along the great circle path between the transmitter and the receiver. The Terrain Integrated Rough
Earth Model (TIREM) model combines physics with empirical data to provide path loss estimates. The
TIREM model is valid from 1 MHz to 1000 GHz.

Note tirempl requires access to the external TIREM library. Use tiremSetup to set up access.

pl = tirempl(r,z,f,Name,Value) returns the path loss in dB with additional options specified
by name-value pairs.

[pl,output] = tirempl(___) returns the path loss, pl, and the output structure containing the
information on the TIREM analysis.

Examples
Path Loss Over Flat Terrain

Calculate the path loss over flat terrain. Define the terrain profile for distances up to 10 km with step
size of 100 m.

freq = 28e9;
r = 0:100:10000;
z = zeros(1,numel(r));
 Lterrain1 = tirempl(r,z,freq,...
 'TransmitterAntennaHeight',5, ...
 'ReceiverAntennaHeight',5)

Lterrain1 =

 142.6089

Input Arguments
r — Distances
numeric vector

7 RF Propagation Objects and Methods

7-150

Distances along the great circle path between the transmitter and the receiver, specified as a numeric
vector with each value in meters. The number of distance values must be equal to the number of
elevation values.
Data Types: double

z — Elevation
numeric vector

Elevation values corresponding to the distance values along the great circle path between the
transmitter and the receiver, specified as a numeric vector with each value in meters. The number of
elevation values must be equal to the number of distance values.
Data Types: double

f — Frequency of propagated signal
scalar | numeric vector

Frequency of the propagated signal, specified as a scalar or numeric vector with each element unit in
Hz.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TransmitterAntennaHeight',50

TransmitterAntennaHeight — Transmitter antenna height above ground
10 (default) | numeric scalar

Transmitter antenna height above the ground, specified as a numeric scalar in the range of 0 to
30000. The height is measured from ground elevation to the center of the antenna.
Data Types: double

ReceiverAntennaHeight — Receiver antenna height above ground
1 (default) | numeric scalar

Receiver antenna height above the ground, specified as a numeric scalar in the range of 0 to 30000.
The height is measured from ground elevation to the center of the antenna.
Data Types: double

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of the transmitter and the receiver antennas, specified as 'horizontal' or
'vertical'.
Data Types: string | char

GroundConductivity — Conductivity of ground
0.005 (default) | numeric scalar

 tirempl

7-151

Conductivity of the ground, specified as a numeric scalar in the range of 0.00005 to 100 in Siemens
per meter. This value is used to calculate the path loss due to ground reflection. The default value
corresponds to the average ground conductivity.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | numeric scalar

Relative permittivity of the ground, specified as a numeric scalar in the range of 1 to100. Relative
permittivity is the ratio of absolute material permittivity to the permittivity of vacuum. This value is
used to calculate the path loss due to ground reflection. The default value corresponds to the average
ground permittivity.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | numeric scalar

Atmospheric refractivity near the ground, specified as a numeric scalar in N-units in the range of 250
to 400. This value is used to calculate the path loss due to atmospheric refraction and tropospheric
scatter. The default value corresponds to average atmospheric conditions.
Data Types: double

Humidity — Absolute air humidity near ground
9 (default) | numeric scalar

Absolute air humidity near the ground, specified as a numeric scalar in g/m^3 in the range of 50 to
110. This value is used to calculate path loss due to atmospheric absorption. The default value
corresponds to the absolute humidity of air at 15 degrees Celsius and 70 percent relative humidity.
Data Types: double

Output Arguments
pl — Path loss
scalar | 1-by-N vector

Path loss, returned as a scalar or 1-by-N vector with each element unit in decibels. N is the number of
frequencies defined in the input f.

Path loss is calculated from free-space loss, terrain diffraction, ground reflection, refraction through
the atmosphere, tropospheric scatter, and atmospheric absorption.

output — Information of TIREM analysis
structure

Information of TIREM analysis, returned as a structure. Each field of the structure represents an
output from TIREM analysis.

See Also
propagationModel | tiremSetup

Topics
“Access TIREM Software”

7 RF Propagation Objects and Methods

7-152

Introduced in R2019a

 tirempl

7-153

tiremSetup
Set up access to Terrain Integrated Rough Earth Model (TIREM)

Syntax
tiremSetup
tiremSetup(libfolder)
libfolder = tiremSetup

Description
tiremSetup opens a dialog to select the Terrain Integrated Rough Earth Model (TIREM) library
folder. The TIREM library folder must contain the tirem3 shared library, where the full library name
is platform dependent. For more information, see “Platform dependent library names” on page 7-154.

tiremSetup(libfolder) sets the TIREM library folder to libfolder.

libfolder = tiremSetup returns the current TIREM library folder.

Input Arguments
libfolder — Name of TIREM library folder
character vector

Name of the TIREM library folder, specified as a character vector.
Data Types: char | string

Output Arguments
libfolder — Current TIREM library folder
character vector | string scalar

Current TIREM library folder, returned as a character vector or a string scalar. If TIREM access has
not been setup, libfolder is empty.

More About
Platform dependent library names

Platform Shared library name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib

See Also
propagationModel | tirempl

7 RF Propagation Objects and Methods

7-154

Topics
“Access TIREM Software”

Introduced in R2019a

 tiremSetup

7-155

raytrace
Plot propagation paths between sites

Syntax
raytrace(tx,rx)
raytrace(tx,rx,propmodel)
raytrace(___ ,Name,Value)
rays = raytrace(___)

Description
raytrace(tx,rx) plots the propagation paths from the transmitter site (tx) to the receiver site
(rx). The propagation paths are found using ray tracing with surface geometry defined by the Map
property. Each propagation path is color-coded according to the received power (dBm) or path loss
(dB) along the path, assuming unpolarized rays.

Note

• The ray tracing analysis includes surface reflections but does not include effects from refraction,
diffraction, or scattering.

• Operational frequency for this function is from 100 MHz to 100 GHz.

raytrace(tx,rx,propmodel) plots the propagation paths from the transmitter site (tx) to the
receiver site (rx) based on the specified propagation model. To input building and terrain materials to
calculate path loss, please use the 'raytracing-image-method' propagation model and set the
properties to specify building materials.

raytrace(___ ,Name,Value) plots propagation paths with additional options specified by one or
more name-value pairs.

rays = raytrace(___) returns the propagation paths in rays.

Examples

Signal Strength Using Ray Tracing Image Method Propagation Model

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 7-0 .

viewer = siteviewer("Buildings","chicago.osm");

7 RF Propagation Objects and Methods

7-156

Create transmitter site on a building.

tx = txsite('Latitude',41.8800, ...
 'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);

Create receiver site near another building.

rx = rxsite('Latitude',41.881352, ...
 'Longitude',-87.629771, ...
 'AntennaHeight',30);

Compute signal strength using ray tracing propagation model and default single-reflection analysis.

pm = propagationModel("raytracing-image-method");
ssOneReflection = sigstrength(rx,tx,pm)

ssOneReflection = -54.0915

Compute signal strength with analysis up to two reflections, where total received power is the
cumulative power of all propagation paths

pm.MaxNumReflections = 2;
ssTwoReflections = sigstrength(rx,tx,pm)

 raytrace

7-157

ssTwoReflections = -52.3890

Observe effect of material by replacing default concrete material with perfect reflector.

pm.BuildingsMaterial = 'perfect-reflector';
ssPerfect = sigstrength(rx,tx,pm)

ssPerfect = -41.9927

Plot propagation paths.

raytrace(tx, rx, pm)

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

7 RF Propagation Objects and Methods

7-158

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Path Loss Due to Material Reflection and Atmosphere

Launch Site Viewer with buildings in Hong Kong. For more information about the osm file, see [1] on
page 7-0 .

viewer = siteviewer("Buildings","hongkong.osm");

Define transmitter and receiver sites to model a small cell scenario in a dense urban environment.

tx = txsite("Name","Small cell transmitter", ...
 "Latitude",22.2789, ...
 "Longitude",114.1625, ...
 "AntennaHeight",10, ...
 "TransmitterPower",5, ...
 "TransmitterFrequency",28e9);
rx = rxsite("Name","Small cell receiver", ...
 "Latitude",22.2799, ...
 "Longitude",114.1617, ...
 "AntennaHeight",1);

Create ray tracing propagation model for perfect reflection.

 raytrace

7-159

pm = propagationModel("raytracing-image-method", ...
 "BuildingsMaterial","perfect-reflector", ...
 "TerrainMaterial","perfect-reflector");

Visualize propagation paths and compute corresponding path losses.

raytrace(tx,rx,pm,"Type","pathloss")
raysPerfect = raytrace(tx,rx,pm,"Type","pathloss");
plPerfect = [raysPerfect{1}.PathLoss]

plPerfect = 1×3

 104.2656 104.2745 112.0095

Re-compute with material reflection loss by setting material type on the propagation model. The first
value is unchanged because it corresponds to the line-of-sight propagation path.

pm.BuildingsMaterial = "glass";
pm.TerrainMaterial = "concrete";
raytrace(tx,rx,pm,"Type","pathloss")
raysMtrls = raytrace(tx,rx,pm,"Type","pathloss");
plMtrls = [raysMtrls{1}.PathLoss]

7 RF Propagation Objects and Methods

7-160

plMtrls = 1×3

 104.2656 106.2545 119.3577

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Ray Tracing In Conference Room

Define a 3-D map for a conference room with one table and four chairs.

mapFileName = "conferenceroom.stl";

Visualize the 3-D map.

figure; view(3);
trisurf(stlread(mapFileName), 'FaceAlpha', 0.3, 'EdgeColor', 'none');

 raytrace

7-161

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

hold on; axis equal; grid off;
xlabel('x'); ylabel('y'); zlabel('z');

Define a transmitter site close to the wall and a receiver site under the table.

 tx = txsite("cartesian", "AntennaPosition", [-1.45; -1.45; 1.5],"TransmitterFrequency", 2.8e9);
 rx = rxsite("cartesian","AntennaPosition", [.3; .2; .5]);

Plot the transmitter site in red and receiver site in blue.

scatter3(tx.AntennaPosition(1,:), tx.AntennaPosition(2,:), tx.AntennaPosition(3,:), 'sr', 'filled');
scatter3(rx.AntennaPosition(1,:), rx.AntennaPosition(2,:),rx.AntennaPosition(3,:), 'sb', 'filled');

Create a ray tracing propagation model for Cartesian coordinates and set the surface material to
wood.

pm = propagationModel("raytracing-image-method", "CoordinateSystem", "cartesian", ...
 "SurfaceMaterial", "wood", "MaxNumReflections", 2);

Perform ray tracing and save the computed rays using comm.Ray object

rays = raytrace(tx, rx, pm, 'Map', mapFileName);
rays = rays{1};

Visualize rays in the 3D map.

 for i = 1:length(rays)
 if rays(i).LineOfSight
 propPath = [rays(i).TransmitterLocation, ...
 rays(i).ReceiverLocation];
 else
 propPath = [rays(i).TransmitterLocation, ...
 rays(i).ReflectionLocations, ...
 rays(i).ReceiverLocation];
 end

 line(propPath(1,:), propPath(2,:), propPath(3,:), 'Color', 'cyan');
 end

7 RF Propagation Objects and Methods

7-162

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object or an array of rxsite objects. If the transmitter sites are
specified as arrays, then the propagation paths are plotted from each transmitter to each receiver
site.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object or an array of txsite objects. If the receiver sites are
specified as arrays, then the propagation paths are plotted from each transmitter to each receiver
site.

propmodel — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can use the propagationModel
function to define this input. The default propagation model is 'raytracing-image-method'.

You can also use the name-value pair 'PropagationModel' to specify this parameter.

 raytrace

7-163

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

Type — Type of quantity to plot
'power' (default) | 'pathloss'

Type of quantity to plot, specified as the comma-separated pair consisting of 'Type' and 'power' in
dBm or 'pathloss' in dB.

When you specify 'power', each path is color-coded according to the received power along the path.
When you specify 'pathloss', each path is color-coded according to the path loss along the path.

Friis equation is used to calculate the received power:

Prx = Ptx + Gtx + Grx− L− Ltx− Lrx

where:

• Prx is the received power along the path.
• Ptx is the transmit power defined in tx.TransmitterPower.
• Gtx is the antenna gain of tx in the direction of the angle-of-departure (AoD).
• Grx is the antenna gain of rx in the direction of the angle-of-arrival (AoA).
• L is the path loss calculated along the path.
• Ltx is the system loss of the transmitter defined in tx.SystemLoss.
• Lrx is the system loss of the receiver defined in rx.SystemLoss.

Data Types: char

PropagationModel — Type of propagation model for ray tracing analysis
'raytracing-image-method' (default) | ray tracing propagation model object

Type of propagation model for ray tracing analysis, specified as the comma-separated pair consisting
of 'PropagationModel' and 'raytracing-image-method' or a ray tracing propagation model
object created using propagationModel.
Data Types: char

NumReflections — Number of reflections to search for in propagation paths
[0 1] (default) | numeric row vector

Number of reflections to search for in propagation paths using ray tracing, specified as the comma-
separated pair consisting of 'NumReflections' and a numeric row vector whose elements are 0, 1,
or 2.

The default value results in the search for a line-of-sight propagation path along with propagation
paths that each contain a single reflection.
Data Types: double

7 RF Propagation Objects and Methods

7-164

Colormap — Color map for coloring propagation paths
'jet' (default) | predefined color map name | M-by-3 array of RGB

Color map for coloring propagation paths, specified as the comma-separated pair consisting of
'Colormap' and a predefined color map name or an M-by-3 array of RGB (red, blue, green) triplets
that define M individual colors.
Data Types: char | double

ColorLimits — Color limits for colormap
two-element numeric row vector

Color limits for colormap, specified as the comma-separated pair consisting of 'ColorLimits' and a
two-element numeric row vector of the form [min max]. The units and default values of the color
limits depend on the value of the 'Type' parameter:

• 'power'– Units are in dBm, and the default value is [-120 -5].
• 'pathloss'– Units are in dB, and the default value is [45 160].

The color limits indicate the values that map to the first and last colors in the colormap. Propagation
paths with values below the minimum color limit are not plotted.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

Map — Map for visualization or surface data
siteviewer object | terrain name

Map for visualization or surface data, specified as the comma-separated pair consisting of 'Map and
one of the following depending on the coordinate system:

Coordinate System Valid map values Default map value
'geographic' • siteviewera

• A terrain name may be
specified if the function is
called with an output
argument. Valid terrain
names are 'none',
'gmted2010', or the name
of the custom terrain data
added using
addCustomTerrain

• current siteviewer or new
siteviewer if none are open.

• 'gmted2010' if called with
an output.

'cartesian' 'none', triangulation object or
name of an STL file.

'none'

a. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

 raytrace

7-165

Output Arguments
rays — Ray configuration object
M-by-N cell array

Ray configuration, returned as a M-by-N cell array where M is the number of transmitter sites and N
is the number of receiver sites. Each cell element is a row vector of comm.Ray objects representing
all the rays found between the corresponding transmitter site and receiver site. array. Within each
row vector, the comm.Ray objects are ordered by increasing number of reflections, and where
number of reflections are equal they are ordered by increasing propagation distance.

See Also
los | siteviewer

Introduced in R2019b

7 RF Propagation Objects and Methods

7-166

addCustomBasemap
Add custom basemap

Syntax
addCustomBasemap(basemapName,URL)
addCustomBasemap(___ ,Name,Value)

Description
addCustomBasemap(basemapName,URL) adds the custom basemap specified by URL to the list of
basemaps available for use with mapping functions. basemapName is the name you choose to call the
custom basemap. Added basemaps remain available for use in future MATLAB sessions.

addCustomBasemap(___ ,Name,Value) specifies name-value pairs that set additional parameters
of the basemap.

Examples

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, then remove the custom
basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL indicates which

server to use to get the data. For load balancing, the provider has three servers that you can use:
a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map data. Web
map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer object that
loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

 addCustomBasemap

7-167

After a custom basemap is added to siteviewer, the custom map is available for future calls to
siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;

7 RF Propagation Objects and Methods

7-168

Use removeCustomBasemap to remove the custom basemap from future calls to siteviewer. Note
the 'Open Topo Map' icon is no longer available in the Imagery tab.

removeCustomBasemap(name)
siteviewer;

 addCustomBasemap

7-169

Input Arguments
basemapName — Name used to identify basemap programmatically
string scalar | character vector

Name used to identify basemap programmatically, specified as a string scalar or character vector.
Example: 'openstreetmap'
Data Types: string | char

URL — Parameterized map URL
string scalar | character vector

Parameterized map URL, specified as a string scalar or character vector. A parameterized URL is an
index of the map tiles, formatted as ${z}/${x}/${y}.png or {z}/{x}/{y}.png, where:

7 RF Propagation Objects and Methods

7-170

• ${z} or {z} is the tile zoom level.
• ${x} or {x} is the tile column index.
• ${y} or {y} is the tile row index.

Example: 'https://hostname/${z}/${x}/${y}.png'
Data Types: string | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: addCustomBasemap(basemapName,URL,'Attribution',attribution)

Attribution — Attribution of custom basemap
'Tiles courtesy of DOMAIN_NAME_OF_URL' (default) | string scalar | string array | character
vector | cell array of character vectors

Attribution of custom basemap, specified as the comma-separated pair consisting of 'Attribution'
and a string scalar, string array, character vector, or cell array of character vectors. If the host is
'localhost', or if URL contains only IP numbers, specify an empty value (''). To create a multiline
attribution, specify a string array or nonscalar cell array of character vectors.

If you do not specify an attribution, the default attribution is 'Tiles courtesy of
DOMAIN_NAME_OF_URL', where the addCustomBasemap function obtains the domain name from the
URL input argument.
Example: 'Credit: U.S. Geological Survey'
Data Types: string | char | cell

DisplayName — Display name of custom basemap
string scalar | character vector

Display name of the custom basemap, specified as the comma-separated pair consisting of
'DisplayName' and a string scalar or character vector.
Example: 'OpenStreetMap'
Data Types: string | char

MaxZoomLevel — Maximum zoom level of basemap
18 (default) | integer in the range [0, 25]

Maximum zoom level of the basemap, specified as the comma-separated pair consisting of
'MaxZoomLevel' and an integer in the range [0, 25].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Tips
• You can find tiled web maps from various vendors, such as OpenStreetMap®, the USGS National

Map, Mapbox, DigitalGlobe, Esri® ArcGIS Online, the Geospatial Information Authority of Japan
(GSI), and HERE Technologies. Abide by the map vendors terms-of-service agreement and include
accurate attribution with the maps you use.

 addCustomBasemap

7-171

• To access a list of available basemaps, press Tab before specifying the basemap in your plotting
function.

See Also
geoaxes | geobasemap | geobubble | removeCustomBasemap

7 RF Propagation Objects and Methods

7-172

removeCustomBasemap
Remove custom basemap

Syntax
removeCustomBasemap(basemapName)

Description
removeCustomBasemap(basemapName) removes the custom basemap specified by basemapName
from the list of available basemaps.

Examples

Input Arguments
basemapName — Name of custom basemap
string scalar | character vector

Name of the custom basemap to remove, specified as a string scalar or character vector. You define
the basemap name when you add the basemap using the addCustomBasemap function.
Data Types: string | char

See Also
addCustomBasemap | geoaxes | geobasemap | geobubble | geodensityplot | geoplot |
geoscatter

 removeCustomBasemap

7-173

buildingMaterialPermittivity
Permittivity and conductivity of building materials

Syntax
[epsilon,sigma,complexepsilon] = buildingMaterialPermittivity(material,fc)

Description
[epsilon,sigma,complexepsilon] = buildingMaterialPermittivity(material,fc)
calculates the relative permittivity, conductivity, and complex relative permittivity for the specified
material at the specified frequency. The methods and equations modeled in the
buildingMaterialPermittivity function are presented in Recommendation ITU-R P.2040 [1].

Examples

Calculate Permittivity of Various Building Materials

Calculate relative permittivity and conductivity at 9 GHz for various building materials as defined by
textual classifications in ITU-R P.2040, Table 3.

material = ["vacuum";"concrete";"brick";"plasterboard";"wood"; ...
 "glass";"ceiling-board";"chipboard";"floorboard";"metal"];
fc = repmat(9e9,size(material)); % Frequency in Hz
[permittivity,conductivity] = ...
 arrayfun(@(x,y)buildingMaterialPermittivity(x,y),material,fc);

Display the results in a table.

varNames = ["Material";"Permittivity";"Conductivity"];
table(material,permittivity,conductivity,'VariableNames',varNames)

ans=10×3 table
 Material Permittivity Conductivity
 _______________ ____________ ____________

 "vacuum" 1 0
 "concrete" 5.31 0.19305
 "brick" 3.75 0.038
 "plasterboard" 2.94 0.054914
 "wood" 1.99 0.049528
 "glass" 6.27 0.059075
 "ceiling-board" 1.5 0.0064437
 "chipboard" 2.58 0.12044
 "floorboard" 3.66 0.085726
 "metal" 1 1e+07

7 RF Propagation Objects and Methods

7-174

Plot Permittivity and Conductivity of Concrete at Various Frequencies

Calculate the relative permittivity and conductivity for concrete at frequencies specified.

fc = ((1:1:10)*10e9); % Frequency in Hz
[permittivity,conductivity] = ...
 arrayfun(@(y)buildingMaterialPermittivity("concrete",y),fc);

Plot the relative permittivity and conductivity of concrete across the range of frequencies.

figure
yyaxis left
plot(fc,permittivity)
ylabel('Relative Permittivity')
yyaxis right
plot(fc,conductivity)
ylabel('Conductivity (S/m)')
xlabel('Frequency (Hz)')
title('Permittivity and Conductivity of Concrete')

Input Arguments
material — Building material
"vacuum" | "concrete" | "brick" | "plasterboard" | ...

Building material, specified as vector of strings including one or more of these options:

 buildingMaterialPermittivity

7-175

"vacuum" "glass" "very-dry-ground"
"concrete" "ceiling-board" "medium-dry-ground"
"brick" "floorboard" "wet-ground"
"plasterboard" "chipboard"
"wood" "metal"

Example: ["vacuum" "brick"]
Data Types: char | string

fc — Carrier frequency
positive scalar

Carrier frequency in Hz, specified as a positive scalar.

Note fc must be in the range [1e6, 10e6] when the material is "very-dry-ground", "medium-
dry-ground" or "wet-ground".

Data Types: double

Output Arguments
epsilon — Relative permittivity
nonnegative scalar | nonnegative row vector

Relative permittivity of the building material, returned as a nonnegative scalar or row vector. The
output dimension of epsilon matches that of the input argument material. For more information
about the computation for the relative permittivity, see “ITU Building Materials” on page 7-177.

sigma — Conductivity
nonnegative scalar | nonnegative row vector

Conductivity, in Siemens/m, of the building material, returned as a nonnegative scalar or row vector.
The output dimension of sigma matches that of the input argument material. For more information
about the computation for the conductivity, see “ITU Building Materials” on page 7-177.

complexepsilon — Complex relative permittivity
complex scalar | row vector of complex values

Complex relative permittivity of the building material, returned as a complex scalar or row vector of
complex values.

The output dimension of complexepsilon matches that of the input argument material. For more
information about the computation for the complex relative permittivity, see “ITU Building Materials”
on page 7-177.

7 RF Propagation Objects and Methods

7-176

More About
ITU Building Materials

Section 3 of ITU-R P.2040-1 [1] presents methods, equations, and values used to calculate real
relative permittivity, conductivity, and complex relative permittivity at carrier frequencies up to 100
GHz for common building materials.

The buildingMaterialPermittivity function uses equations from ITU-R P.2040-1 to compute
these values.

• The real part of the relative permittivity is calculated as
epsilon = afb.

The computation of epsilon is based on equation (58). f is the frequency in GHz. Values for a and
b are specified in Table 3 from ITU-R P.2040-1.

• The conductivity in Siemens/m is calculated as
sigma = cfd.

The computation of sigma is based on equation (59). f is the frequency in GHz. Values for c and d
are specified in Table 3 from ITU-R P.2040-1.

• The complex permittivity is calculated as
complexepsilon = epsilon – 1i sigma / (2πfcε0).

The computation of complexepsilon is based on Equations (59) and (9b). f is the frequency in
GHz. c is the velocity of light in free space. ε0 = 8.854187817e-12 Farads/m, where ε0 is the
electric constant for the permittivity of free space.

For cases where the value of b or d is zero, the corresponding value of epsilon or sigma is a or c,
respectively and independent of frequency.

The contents of Table 3 from ITU-R P.2040-1 are repeated in this table. The values a, b, c, and d are
used to calculate relative permittivity and conductivity. Except as noted for the three ground types,
the frequency ranges given in the table are not hard limits but are indicative of the measurements
used to derive the models. The buildingMaterialPermittivity function interpolates or
extrapolates relative permittivity and conductivity values for frequencies that fall outside of the noted
limits. To compute relative permittivity and conductivity for different types of ground as a function
carrier frequencies up to 1000 GHz, see the earthSurfacePermittivity function.

Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Vacuum (~ air) 1 0 0 0 [0.001, 100]
Concrete 5.31 0 0.0326 0.8095 [1, 100]
Brick 3.75 0 0.038 0 [1, 10]
Plasterboard 2.94 0 0.0116 0.7076 [1, 100]
Wood 1.99 0 0.0047 1.0718 [0.001, 100]
Glass 6.27 0 0.0043 1.1925 [0.1, 100]
Ceiling board 1.50 0 0.0005 1.1634 [1, 100]
Chipboard 2.58 0 0.0217 0.78 [1, 100]
Floorboard 3.66 0 0.0044 1.3515 [50, 100]

 buildingMaterialPermittivity

7-177

Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Metal 1 0 107 0 [1, 100]
Very dry ground 3 0 0.00015 2.52 [1, 10] only(a)

Medium dry
ground

15 – 0.1 0.035 1.63 [1, 10] only(a)

Wet ground 30 – 0.4 0.15 1.30 [1, 10] only(a)

Note (a): For the three ground types (very dry, medium dry, and wet), the noted frequency limits
cannot be exceeded.

References
[1] ITU-R P.2040-1. "Effects of Building Materials and Structures on Radiowave Propagation Above

100MHz." International Telecommunications Union - Radiocommunications Sector (ITU-R).
July 2015.

See Also
Functions
earthSurfacePermittivity | propagationModel | raypl | raytrace

Objects
comm.Ray

Introduced in R2020a

7 RF Propagation Objects and Methods

7-178

earthSurfacePermittivity
Permittivity and conductivity of earth surface materials

Syntax
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc)

Description
The earthSurfacePermittivity function computes electrical characteristics (relative permittivity,
conductivity, and complex relative permittivity) of earth surface materials based on the methods and
equations presented in ITU-R P.527 [1]. The earthSurfacePermittivity function provides various
syntaxes to account for characteristics germane to the specified surface material.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp) calculates the electrical characteristics for pure water at the specified frequency and
temperature. For pure-water, the temperature setting must be greater than 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
calculates the electrical characteristics for dry-ice at the specified frequency and temperature. For
dry-ice, the temperature must be less than or equal to 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity) calculates the electrical characteristics for sea water at the specified frequency,
temperature, and salinity. For sea-water, the temperature must be greater than –2 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac) calculates the electrical characteristics for wet ice at the specified frequency, and liquid
water volume fraction. For wet-ice, the temperature is 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc) calculates the electrical characteristics for
soil at the specified frequency, temperature, sand percentage, clay percentage, specific gravity, and
volumetric water content.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity) sets the soil bulk density in addition to input arguments from the previous syntax.

 earthSurfacePermittivity

7-179

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc) calculates the electrical characteristics for vegetation at the specified frequency,
temperature, and gravimetric water content. For vegetation, the temperature must be greater than or
equal to –20 ℃.

Examples

Compare Permittivity and Conductivity of Salt-free Sea Water to Pure Water

Compare the relative permittivity and conductivity for salt-free (zero-salinity) sea water to pure
water.

Specify a carrier frequency of 9 GHz, temperature of 30℃, and salinity of zero.

fc = 9e9; % Carrier frequency in Hz.
temp = 30;
salinity = 0;

Compute the relative permittivity and conductivity.

[epsilon_pure_water,sigma_pure_water] = earthSurfacePermittivity('pure-water',fc,temp);
[epsilon_sea_water,sigma_sea_water] = earthSurfacePermittivity('sea-water',fc,temp,salinity);

Confirm that salt-free sea water and pure water have equal relative permittivity and conductivity.

isequal(epsilon_pure_water,epsilon_sea_water)

ans = logical
 1

isequal(sigma_pure_water,sigma_sea_water)

ans = logical
 1

Compare Permittivity and Conductivity of Wet Ice to Dry Ice

Compare the relative permittivity and conductivity for wet ice with no liquid water to dry ice at 0℃.
Confirm the results differ by a negligible amount.

Specify a carrier frequency of 12 GHz.

fc = 12e9; % Carrier frequency in Hz.

Calculate the relative permittivity and conductivity for wet ice with zero liquid water by volume.

liqfrac = 0;
[epsilon_wet_ice_0,sigma_wet_ice_0] = earthSurfacePermittivity('wet-ice',fc,liqfrac); % Set liquid water volume fraction to 0.

Calculate the relative permittivity and conductivity for dry ice at 0 ℃.

7 RF Propagation Objects and Methods

7-180

temp = 0;
[epsilon_dry_ice_0,sigma_dry_ice_0] = earthSurfacePermittivity('dry-ice',fc,temp); % Set temperature to 0.

Compare the relative permittivity and conductivity for wet ice with no liquid to dry ice at 0℃.
Confirm that wet ice with no liquid and dry ice at 0℃ have essentially equal relative permittivity and
conductivity.

epsilon_wet_ice_0-epsilon_dry_ice_0

ans = 8.8818e-16

sigma_wet_ice_0-sigma_dry_ice_0

ans = -9.2179e-16

Plot permittivity and conductivity versus frequency for dry ice and for wet ice. For dry ice, vary the
temperature. For wet ice, vary the liquid water volume fraction. Calculate the permittivity and
conductivity values by using arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs.

freq = repmat([0.1,10,20,40,60]*1e9,6,1);
temp = repmat((-100:20:0)',1,5);
liqfrac = repmat((0:0.2:1)',1,5);
[epsilon_dry_ice, sigma_dry_ice] = arrayfun(@(x,y)earthSurfacePermittivity('dry-ice',x,y),freq,temp);
[epsilon_wet_ice, sigma_wet_ice] = arrayfun(@(x,y)earthSurfacePermittivity('wet-ice',x,y),freq,liqfrac);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp,freq,epsilon_dry_ice,'FaceColor','interp')
title('Permittivity of Dry Ice')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp,freq,sigma_dry_ice,'FaceColor','interp')
title('Conductivity of Dry Ice')
nexttile
surf(liqfrac,freq,epsilon_wet_ice,'FaceColor','interp')
title('Permittivity of Wet Ice')
xlabel('Liquid Fraction')
ylabel('Frequency (Hz)')
nexttile
surf(liqfrac,freq,sigma_wet_ice,'FaceColor','interp')
title('Conductivity of Wet Ice')

 earthSurfacePermittivity

7-181

Calculate Permittivity and Conductivity of Various Soil Mixtures

Calculate relative permittivity and conductivity for various soil mixtures as defined by textual
classifications in ITU-R P.527, Table 1.

Initialize computation variables for constant values and arrayed values.

fc = 28e9; % Frequency in Hz
temp = 23; % Temperature in °C
vwc = 0.5; % Volumetric water content
pSand = [51.52; 41.96; 30.63; 5.02]; % Sand percentage
pClay = [13.42; 8.53; 13.48; 47.38]; % Clay percentage
sg = [2.66; 2.70; 2.59; 2.56]; % Specific gravity
bd = [1.6006; 1.5781; 1.5750; 1.4758]; % Bulk density (g/cm^3)

Calculate the relative permittivity and conductivity for these textual classifications: sandy loam, loam,
silty loam, and silty clay. Use arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs. Tabulate the results.

[Permittivity,Conductivity] = arrayfun(@(w,x,y,z)earthSurfacePermittivity(...
 'soil',fc,temp,w,x,y,vwc,z),pSand,pClay,sg,bd);

pSilt = 100 - (pSand + pClay); % Silt percentage
soilType = ["Sandy Loam";"Loam";"Silty Loam";"Silty Clay"];

7 RF Propagation Objects and Methods

7-182

varNames1 = ["Soil Textual Classification";"Sand";"Clay";"Silt";"Specific Gravity";"Bulk Density"];
varNames2 = ["Soil Textual Classification";"Permittivity";"Conductivity"];

ITU-R P.527, Table 1 specifies the sand percentage, clay percentage, specific gravity, and bulk density
for soil mixtures with these soil textual classifications.

table(soilType,pSand,pClay,pSilt,sg,bd,'VariableNames',varNames1)

ans=4×6 table
 Soil Textual Classification Sand Clay Silt Specific Gravity Bulk Density
 ___________________________ _____ _____ _____ ________________ ____________

 "Sandy Loam" 51.52 13.42 35.06 2.66 1.6006
 "Loam" 41.96 8.53 49.51 2.7 1.5781
 "Silty Loam" 30.63 13.48 55.89 2.59 1.575
 "Silty Clay" 5.02 47.38 47.6 2.56 1.4758

The relative permittivity and conductivity for these soil textual classifications are included in this
table.

table(soilType,Permittivity,Conductivity,'VariableNames',varNames2)

ans=4×3 table
 Soil Textual Classification Permittivity Conductivity
 ___________________________ ____________ ____________

 "Sandy Loam" 15.281 18.2
 "Loam" 14.563 16.998
 "Silty Loam" 13.965 16.011
 "Silty Clay" 12.861 14.647

Calculate Permittivity and Conductivity of Vegetation

Calculate relative permittivity and conductivity versus frequency for vegetation, varying gravimetric
water content and temperature.

Calculate relative permittivity and conductivity for vegetation at specified settings.

fc = 10e9; % Frequency in Hz
temp = 23; % Temperature in °C
gwc = 0.68; % Gravimetric water content
[epsilon_veg,sigma_veg] = ...
 earthSurfacePermittivity('vegetation',fc,temp,gwc)

epsilon_veg = 20.5757

sigma_veg = 4.9320

Calculate values necessary to plot permittivity and conductivity by using arrayfun to apply the
earthSurfacePermittivity function to the elements of the arrayed inputs.

For a range of temperatures, calculate values to plot permittivity and conductivity versus frequency
for vegetation at a 0.68 gravimetric water content.

 earthSurfacePermittivity

7-183

fc = repmat([0.1,10,20,40,60]*1e9,6,1);
gwc1 = 0.68;
temp1 = repmat((-20:20:80)',1,5);
[epsilon_veg_gwc,sigma_veg_gwc] = ...
 arrayfun(@(x,y)earthSurfacePermittivity('vegetation',x,y,gwc1),fc,temp1);

For a range of gravimetric water contents, calculate values to plot permittivity and conductivity
versus frequency for vegetation at 10°C.

temp2 = 10;
gwc2 = repmat((0.2:0.1:0.7)',1,5);
[epsilon_veg_tmp, sigma_veg_tmp] = ...
 arrayfun(@(x,z)earthSurfacePermittivity('vegetation',x,temp2,z),fc,gwc2);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp1,fc,epsilon_veg_gwc,'FaceColor','interp')
title('Permittivity of Vegetation at 0.68 gwc')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp1,fc,sigma_veg_gwc,'FaceColor','interp')
title('Conductivity of Vegetation at 0.68 gwc')
nexttile
surf(gwc2,fc,epsilon_veg_tmp,'FaceColor','interp')
title('Permittivity of Vegetation at 10°C')
xlabel('Gravimetric Water Content')
ylabel('Frequency (Hz)')
nexttile
surf(gwc2,fc,sigma_veg_tmp,'FaceColor','interp')
title('Conductivity of Vegetation at 10°C')

7 RF Propagation Objects and Methods

7-184

Input Arguments
fc — Carrier frequency
scalar in the range (0, 1e12]

Carrier frequency in Hz, specified as a scalar in the range (0, 1e12].
Data Types: double

temp — Temperature
numeric scalar

Temperature in °C, specified as a numeric scalar. Valid surfaces and associated temperature limits are
indicated in this table.

Surface Valid Temperature (℃)
pure-water greater than 0
dry-ice less than or equal to 0
sea-water greater than or equal to –2
soil any numeric
vegetation ≥ –20

 earthSurfacePermittivity

7-185

Note When the surface is wet-ice, the temperature is 0 ℃.

Data Types: double

salinity — Salinity of sea water
nonnegative scalar

Salinity of the sea water in g/Kg, specified as a nonnegative scalar.
Data Types: double

liqfrac — Liquid water volume fraction of wet ice
numeric scalar in the range [0, 1]

Liquid water volume fraction of the wet ice, specified as a numeric scalar in the range [0, 1].
Data Types: double

sandpercent — Sand percentage of soil
numeric scalar in the range [0, 100]

Sand percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

claypercent — Clay percentage of soil
numeric scalar in the range [0, 100]

Clay percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

specificgravity — Specific gravity of soil
nonnegative scalar

Specific gravity of the soil, specified as a nonnegative scalar. The specific gravity is the mass density
of the soil sample divided by the mass density of the amount of water in the soil sample.
Data Types: double

vwc — Volumetric water content of soil
numeric scalar in the range [0, 1]

Volumetric water content of the soil, specified as a numeric scalar in the range [0, 1]. For more
information, see “Soil Water Content” on page 7-188.
Data Types: double

bulkdensity — Bulk density of soil
nonnegative scalar

Bulk density, in g/cm3, of the soil, specified as a nonnegative scalar. For more information, see “Soil
Water Content” on page 7-188.
Data Types: double

7 RF Propagation Objects and Methods

7-186

gwc — Gravimetric water content of vegetation
numeric scalar in the range [0, 0.7]

Gravimetric water content of the vegetation, specified as a numeric scalar in the range [0, 0.7]. For
more information, see “Soil Water Content” on page 7-188.
Data Types: double

Output Arguments
epsilon — Relative permittivity
nonnegative scalar

Relative permittivity of the earth surface, returned as a nonnegative scalar.

sigma — Conductivity
nonnegative scalar

Conductivity of the earth surface in Siemens per meter (S/m), returned as a nonnegative scalar.

complexepsilon — Complex relative permittivity
complex scalar

Complex relative permittivity of the earth surface, returned as a complex scalar calculated as
complexepsilon = epsilon – 1i sigma / (2πfcε0).

The computation of complexepsilon is based on Equations (59) and (9b) in ITU-R P.527 [1]. f is the
frequency in GHz. c is the velocity of light in free space. ε0 = 8.854187817e-12 Farads/m, where ε0 is
the electric constant for the permittivity of free space.

More About
ITU Terrain Materials

ITU-R P.527 [1] presents methods and equations to calculate complex relative permittivity at carrier
frequencies up to 1,000 GHz for these common earth surface materials.

• Water
• Sea Water
• Dry or Wet Ice
• Dry or Wet Soil (combination of sand, clay, and silt)
• Vegetation (above and below freezing)

As described in ITU-R P.527, specific textural classification applies to these mixtures of sand, clay, and
silt in soil with associated specific gravities and bulk densities.

Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

% Sand 51.52 41.96 30.63 5.02
% Clay 13.42 8.53 13.48 47.38
% Silt 35.06 49.51 55.89 47.60

 earthSurfacePermittivity

7-187

Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

Specific gravity
(ρs)

2.66 2.70 2.59 2.56

Bulk Density (ρb) in
g/cm3

1.6006 1.5781 1.5750 1.4758

Soil Water Content

Soil water content is expressed on a gravimetric or volumetric basis. Gravimetric water content, gwc,
is the mass of water per mass of dry soil. Volumetric water content, vwc, is the volume of liquid water
per volume of soil. The bulk density, bulkdensity, is the ratio of the dry soil weight to the volume of
the soil sample. The relationship between gwc and vwc is vwc = gwc ⟂ bulkdensity. When bulk
density is not specified, the value of bulkdensity is computed by using ITU-R P.527, Equation 36:

bulkdensity = 1.07256 + 0.078886 ln(pSand) + 0.038753 ln(pClay) + 0.032732 ln(pSilt),
where

• pSand = sandpercent
• pClay = claypercent
• pSilt = 100 – (sandpercent + claypercent)

References
[1] ITU-R P.527-5. "Electrical characteristics of the surface of the Earth." International

Telecommunications Union - Radiocommunications Sector (ITU-R). August 2019.

See Also
Functions
buildingMaterialPermittivity | propagationModel | raypl | raytrace

Objects
comm.Ray

Introduced in R2020a

7 RF Propagation Objects and Methods

7-188

raypl
Calculate path loss and phase shift for ray

Syntax
[pl,phase] = raypl (ray)
[pl,phase] = raypl (ray,Name,Value)

Description
[pl,phase] = raypl (ray) returns the path loss in dB and phase shift in radians based on the
properties specified by ray. The path loss and path shift computations consider the free space loss
and reflection loss derived from the propagation path, reflection materials, and polarizations. The
function accounts for geometric coupling between horizontal and vertical polarizations only when
both transmit and receive antennas are polarized. For more information, see “Path Loss
Computation” on page 7-194.

[pl,phase] = raypl (ray,Name,Value) calculates the path loss and phase shift with additional
options specified by one or more name-value pair arguments.

Examples

Reevaluate Path Loss Changing Reflection Materials and Frequency

Change the reflection materials and frequency for a ray and reevaluate the path loss and phase shift.

Launch Site Viewer with buildings in Hong Kong. For more information about the osm file, see [1] on
page 7-0 . Specify transmitter and receiver sites.

viewer = siteviewer("Buildings","hongkong.osm");

tx = txsite("Latitude",22.2789,"Longitude",114.1625, ...
 "AntennaHeight",10,"TransmitterPower",5, ...
 "TransmitterFrequency",28e9);
rx = rxsite("Latitude",22.2799,"Longitude",114.1617, ...
 "AntennaHeight",1);

Perform ray tracing between the sites.

rays = raytrace(tx,rx,"NumReflections",0:2);

Find the first ray with 2-order reflections from the result. Display the ray characteristics. Plot the ray
to see the ray reflect off two buildings.

ray = rays{1}(find([rays{1}.NumReflections] == 2,1))

ray =
 Ray with properties:

 PathSpecification: 'Locations'

 raypl

7-189

 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×2 double]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 122.1825
 PhaseShift: 4.5977

 Read-only properties:
 PropagationDelay: 8.3060e-07
 PropagationDistance: 249.0069
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 2

plot(ray);

By default, all buildings have concrete building material electrical characteristics. Change the
material to metal for the second reflection and re-evaluate path loss. Use the raypl function to
reevaluate the pathloss for the ray. Display the ray path to compare the change in path loss. Replot to
show the slight change in color due to the path loss change of the ray.

[ray.PathLoss,ray.PhaseShift] = raypl(ray, ...
 "ReflectionMaterials",["concrete","metal"])

ray =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×2 double]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 117.4814
 PhaseShift: 4.5977

 Read-only properties:
 PropagationDelay: 8.3060e-07
 PropagationDistance: 249.0069
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 2

ray =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0

7 RF Propagation Objects and Methods

7-190

 ReflectionLocations: [3×2 double]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 117.4814
 PhaseShift: 4.5977

 Read-only properties:
 PropagationDelay: 8.3060e-07
 PropagationDistance: 249.0069
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 2

plot(ray);

Change the frequency and reevaluate the path loss and phase shift. Plot the ray again and observe
the obvious color change.

ray.Frequency = 2e9;
[ray.PathLoss,ray.PhaseShift] = raypl(ray, ...
 "ReflectionMaterials",["concrete","metal"]);
plot(ray);

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
ray — Ray configuration
comm.Ray object

Ray configuration, specified as one comm.Ray object. The object must have the
PathSpecification property set to "Locations".
Data Types: comm.Ray

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: raypl(ray,'TransmitterPolarization','H','ReceiverPolarization','H'),
specifies the horizontal polarizations for the transmit and receive antennas for ray.

ReflectionMaterials — Reflection materials
"concrete" (default) | string scalar | 1-by-NR string vector | 2-by-1 numeric vector | 2-by-NR
numeric matrix

Reflection materials for a non-line-of-sight (NLOS) ray, specified as a string scalar, 1-by-NR string
vector, 2-by-1 numeric vector, or 2-by-NR numeric matrix. NR represents the number of reflections as
specified by the comm.Ray.NumReflections property.

 raypl

7-191

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

• When ReflectionMaterials is specified as a string scalar or string vector, the reflection
material must be one of "concrete", "brick", "wood", "glass", "metal", "water",
"vegetation", "loam", or "perfect-reflector". When specified as a string scalar, the
setting applies to all the reflections.

• When ReflectionMaterials is specified as a 2-by-1 numeric vector, the [relative permittivity;
conductivity] value pair applies to all the reflections.

• When ReflectionMaterials is specified as a 2-by-NR numeric matrix, the [relative permittivity;
conductivity] value pair in each column applies for each of the NR reflection points, respectively.

Example: "ReflectionMaterials",["concrete","water"], specifies that a ray with two
reflections will use electrical characteristics of concrete at the first reflection point and water at the
second reflection point.
Data Types: string | char | double

TransmitterPolarization — Transmit antenna polarization type
"none" (default) | "H" | "V" | "RHCP" | "LHCP" | normalized 2-by-1 Jones vector

Transmit antenna polarization type, specified as "none", "H", "V", "RHCP", "LHCP", or a normalized
[H; V] Jones vector. For more information, see “Jones Vector Notation” on page 7-195.
Example: 'TransmitterPolarization','RHCP', specifies right-hand circular polarization for the
transmit antenna.
Data Types: double | char | string

ReceiverPolarization — Receive antenna polarization type
"none" (default) | "H" | "V" | "RHCP" | "LHCP" | normalized 2-by-1 Jones vector

Receive antenna polarization type, specified as "none", "H", "V", "RHCP", "LHCP", or a normalized
[H; V] Jones vector. For more information, see “Jones Vector Notation” on page 7-195.
Example: 'ReceiverPolarization',[1;0], specifies horizontal polarization for the receive
antenna by using Jones vector notation.
Data Types: double | char | string

TransmitterAxes — Orientation of transmit antenna axes
3-by-3 identity matrix (default) | 3-by-3 unitary matrix

Orientation of the transmit antenna axes, specified as a 3-by-3 unitary matrix indicating the rotation
from the transmitter local coordinate system (LCS) into the global coordinate system (GCS). When
the CoordinateSystem property of the comm.Ray is set to "Geographic", the GCS orientation is
the local East-North-Up (ENU) coordinate system at transmitter. For more information, see
“Coordinate System Orientation” on page 7-193.
Example: 'TransmitterAxes',eye(3), specifies that the local coordinate system for the
transmitter axes is aligned with the global coordinate system. This is the default orientation.
Data Types: double

ReceiverAxes — Orientation of receive antenna axes
3-by-3 identity matrix (default) | 3-by-3 unitary matrix

Orientation of the receive antenna axes, specified as a 3-by-3 unitary matrix indicating the rotation
from the receiver local coordinate system (LCS) into the global coordinate system (GCS). The GCS
orientation is the local East-North-Up (ENU) coordinate system at receiver when

7 RF Propagation Objects and Methods

7-192

the .CoordinateSystem property of the comm.Ray is set to "Geographic". For more information,
see “Coordinate System Orientation” on page 7-193.
Example: 'ReceiverAxes',[0 -1 0; 1 0 0; 0 0 1], specifies a 90° rotation around the z-axis
of the local receiver coordinate system with respect to the global coordinate system.
Data Types: double

Output Arguments
pl — Path loss
scalar

Path loss in dB, returns the path loss calculated for the input ray object, accounting for any
modifications specified by Name,Value pairs.

phase — Phase shift
scalar

Phase shift in radians, returns the phase shift calculated for the input ray object, accounting for any
modifications specified by Name,Value pairs.

More About
Coordinate System Orientation

This image shows the orientation of the electromagnetic fields in the global coordinate system (GCS)
and the local coordinate systems of the transmitter and receiver.

When the CoordinateSystem property of the comm.Ray is set to "Geographic", the GCS
orientation is the local East-North-Up (ENU) coordinate system at observer. The path loss

 raypl

7-193

computation accounts for the round-earth differences between ENU coordinates at the transmitter
and receiver.

Path Loss Computation

The path loss computations in raypl follow the path loss and reflection matrix computations as
described in IEEE Document 802.11-09/0334r8 [1]. The function accounts for geometric coupling
between horizontal and vertical polarizations only when both transmit and receive antennas are
polarized.

For a first order signal reflection, the reflection matrix, Href1, is computed as

Href1 =
cos(ψrx) sin(ψrx)
−sin(ψrx) cos(ψrx)

×
R⊥(αinc) 0

0 R∥(αinc)
×

cos(ψtx) sin(ψtx)
−sin(ψtx) cos(ψtx)

The terms in the channel propagation matrix computation represent

• RX geometric coupling matrix — Recalculation of the polarization vector from the plane of
incidence basis to RX coordinates.

• Polarization matrix — Matrix includes the reflection coefficients R⟂ and R∥ for the perpendicular
and parallel components of the electric field E ⟂ and E ∥ respectively.

• TX geometric coupling matrix — Recalculation of the polarization vector from the TX coordinates
basis to the plane of incidence.

This figure illustrates a first order reflected signal path.

7 RF Propagation Objects and Methods

7-194

Where

• The reflection plane is offset from the global coordinate system origin.
• k represents the waveform propagation vector.
• n represents the vector normal to the incident plane.
• Eθ and Eφ represent the vertical and horizontal electromagnetic field vectors.
• αinc represents the incident angle of k.
• ψtx represents the angle between Eθ and a normal to the incident plane.
• TX represents the transmit antenna.
• RX represents the receive antenna.

The reflection matrix computations for second order signal reflections extend from the first order
signal reflection computations. For more information, see IEEE Document 802.11-09/0334r8 [1].

Jones Vector Notation

For Jones vector notation, the raypl function describes signal polarization using Jones calculus.

The orthogonal components of Jones vectors are defined for Eθ and Eφ. This table shows the Jones
vector corresponding to various antenna polarizations.

Antenna Polarization Type Corresponding Jones Vector
Linear polarized in the θ direction H

V
=

0
1

Linear polarized in the φ direction H
V

=
1
0

Left-hand circular polarized (LHCP) H
V

= 1
2

j
1

Right-hand circular polarized (RHCP) H
V

= 1
2
− j
1

References
[1] Maltsev, A., et al. "Channel models for 60 GHz WLAN systems." IEEE Document

802.11-09/0334r8, May 2010.

See Also
Functions
buildingMaterialPermittivity | earthSurfacePermittivity | propagationModel |
raytrace

Objects
comm.Ray | siteviewer

Introduced in R2020a

 raypl

7-195

location
Data location coordinates

Syntax
datalocation = location(pd)
[lat,lon] = location(pd)

Description
datalocation = location(pd) returns the location coordinates of the data points in the
propagation data object.

[lat,lon] = location(pd) returns the latitude and longitude of the propagation data object

Examples

Transmitter Site Service Areas

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create array of transmitter sites.

txs = txsite("Name", names,...
 "Latitude",lats,...
 "Longitude",lons, ...
 "TransmitterFrequency",2.5e9);

Compute received power data for each transmitter site.

maxr = 20000;
pd1 = coverage(txs(1),"MaxRange",maxr);
pd2 = coverage(txs(2),"MaxRange",maxr);
pd3 = coverage(txs(3),"MaxRange",maxr);

Compute rectangle containing locations of all data.

locs = [location(pd1); location(pd2); location(pd3)];
[minlatlon, maxlatlon] = bounds(locs);

Create grid of locations over rectangle.

gridlength = 300;
latv = linspace(minlatlon(1),maxlatlon(1),gridlength);
lonv = linspace(minlatlon(2),maxlatlon(2),gridlength);
[lons,lats] = meshgrid(lonv,latv);
lats = lats(:);
lons = lons(:);

7 RF Propagation Objects and Methods

7-196

Get data for each transmitter at grid locations using interpolation.

v1 = interp(pd1,lats,lons);
v2 = interp(pd2,lats,lons);
v3 = interp(pd3,lats,lons);

Create propagation data containing minimum received power values.

minReceivedPower = min([v1 v2 v3],[],2,"includenan");
pd = propagationData(lats,lons,"MinReceivedPower",minReceivedPower);

Plot minimum received power, which shows the weakest signal received from any transmitter site.
The area shown may correspond to the service area of triangulation using the three transmitter sites.

sensitivity = -110;
contour(pd,"Levels",sensitivity:-5,"Type","power")

Input Arguments
pd — Propagation data
propagationData object (default)

 location

7-197

Propagation data, specified as a propagationData object.

Output Arguments
datalocation — Location coordinates of data points
M-by-2 matrix

Location of antenna site, returned as an M-by-2 matrix with each element unit in degrees. M is the
number of rows in the data table with valid latitude and longitude values. Duplicate locations are not
removed.

lat — Latitude of data points
M-by-1 vector

Latitude of data points, returned as an M-by-1 vector with each element unit in degrees.

lon — Longitude of data points
M-by-1 vector

Longitude of data points, returned as an M-by-1 matrix with each element unit in degrees. The output
is wrapped so that the values are in the range [-180 180].

See Also
getDataVariable | interp

Introduced in R2020a

7 RF Propagation Objects and Methods

7-198

plot
Plot propagation data on map

Syntax
plot(pd)
plot(___ ,Name,Value)

Description
plot(pd) plots the propagation data on a map. Each data point is displayed as a circular marker
that is colored according to the corresponding value.

plot(___ ,Name,Value) plots the propagation data with additional options specified by name-
value pair arguments.

Examples

Compute Signal Strength Data in Urban Environment

Launch Site Viewer with basemaps and building files for Manhattan. For more information about the
osm file, see [1] on page 7-0 .

viewer = siteviewer("Basemap","streets_dark",...
 "Buildings","manhattan.osm");

 plot

7-199

Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
 "Longitude",-74.0114,...
 "AntennaHeight",80);
show(tx)

7 RF Propagation Objects and Methods

7-200

Create receiver sites along nearby streets.

latitude = [linspace(40.7088, 40.71416, 50), ...
 linspace(40.71416, 40.715505, 25), ...
 linspace(40.715505, 40.7133, 25), ...
 linspace(40.7133, 40.7143, 25)]';
longitude = [linspace(-74.0108, -74.00627, 50), ...
 linspace(-74.00627 ,-74.0092, 25), ...
 linspace(-74.0092, -74.0110, 25), ...
 linspace(-74.0110, -74.0132, 25)]';
rxs = rxsite("Latitude", latitude, "Longitude", longitude);

Compute signal strength at each receiver location.

signalStrength = sigstrength(rxs, tx)';

Create a propagationData object to hold computed signal strength data.

tbl = table(latitude, longitude, signalStrength);
pd = propagationData(tbl);

Plot the signal strength data on a map as colored points.

legendTitle = "Signal" + newline + "Strength" + newline + "(dB)";
plot(pd, "LegendTitle", legendTitle, "Colormap", parula);

 plot

7-201

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

7 RF Propagation Objects and Methods

7-202

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

DataVariableName — Data variable to plot
pd.DataVariableName (default) | character vector | string scalar

Data variable to plot, specified as the comma-separated pair consisting of 'DataVariableName' and
a character vector or a string scalar corresponding to a variable name in the data table used to create
the propagation data container object pd. The default value is dynamic and corresponds to the
DataVariableName property of the propagationData object.
Data Types: char | string

Type — Type of value to plot
'custom' (default) | 'power' | 'efield' | 'sinr' | 'pathloss'

Type of value to plot, specified as the comma-separated pair consisting of 'Type' and one of the
values in the Type column:

Type ColorLimits LegendTitle
'custom' [min(Data) max(Data)] ''
'power' [-120 -5] 'Power (dBm)'
'efield' [20 135] 'E-field (dBuV/m)'
'sinr' [-5 20] 'SINR (dB)'
'pathloss' [45 160] 'Path loss (dB)'

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: char | string

Levels — Data value levels to plot
numeric vector

Data value levels to plot, specified as the comma-separated pair consisting of 'Levels' and a
numeric vector. The propagation data is binned according to Levels. The data in each bin is color
coded according to the corresponding level. The colors are selected using Colors if specified, or else
Colormap and ColorLimits. Data points with values below the minimum level are not included in
the plot.

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: double

Colors — Colors of data points
M-by-3 array of RGB | array of strings | cell array of character vectors

Colors of the data points, specified as the comma-separated pair consisting of 'Colors' and an M-
by-3 array of RGB (red, blue, green) or an array of strings, or a cell array of character vectors. Colors
are assigned element-wise to values in Levels for coloring the corresponding points. Colors cannot
be used with Colormap and ColorLimits.
Data Types: double | char | string

Colormap — Color map for coloring points
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

 plot

7-203

Colormap for the coloring points, specified as the comma-separated pair consisting of 'Colormap'
and a predefined colormap name or an M-by-3 array of RGB (red, blue, green) triplets that define M
individual colors. Colormap cannot be used with Colors.
Data Types: double | char | string

ColorLimits — Color limits for color map
two-element vector

Color limits for the colormap, specified as the comma-separated pair consisting of 'ColorLimits'
and a two-element vector of the form [min max]. The color limits indicate the data level values that
map to the first and last colors in the colormap. ColorLimits cannot be used with Colors.
Data Types: double

MarkerSize — Size of data markers
10 (default) | positive numeric scalar

Size of data markers plotted on the map, specified as the comma-separated pair consisting of
'MarkerSize' and a positive numeric scalar in pixels.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

LegendTitle — Title of color legend
character vector | string scalar

Title of color legend, specified as the comma-separated pair consisting of 'LegendTitle' and a
character vector or a string scalar.
Data Types: string | char

Map — Map for surface data
siteviewer object

Map for surface data, specified as the comma-separated pair consisting of 'Map' and a siteviewer
object.7 The default value is the current Site Viewer or a new Site Viewer, if none is open.
Data Types: char | string

See Also
contour | interp

Introduced in R2020a

7. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

7 RF Propagation Objects and Methods

7-204

getDataVariable
Get data variable values of data points in propagation data object

Syntax
datavariable = getDataVariable(pd)
[datavariable,lat,lon] = getDataVariable(pd)
[___] = getDataVariable(pd,varname)

Description
datavariable = getDataVariable(pd) returns the values of the data points in the propagation
data object. The data is processed such that the missing values are removed and duplicate location
data are replaced with mean values.

[datavariable,lat,lon] = getDataVariable(pd) returns the location coordinates of the data
points in the propagation data object.

[___] = getDataVariable(pd,varname) returns the values of the data points corresponding to
the varname variable.

Examples

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
 "Latitude",lats,...
 "Longitude",lons, ...
 "TransmitterFrequency",2.5e9);
show(txs)

 getDataVariable

7-205

Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)

7 RF Propagation Objects and Methods

7-206

Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR");

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);

 getDataVariable

7-207

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

varname — Variable name in data table
character vector | string scalar

Variable name in the data table, specified as a character vector or a string scalar. This variable name
must correspond to a variable with numeric data other than the latitude or longitude data.

Output Arguments
datavariable — Values of data points
column vector

Values of data points in the propagation data object, returned as a column vector.

7 RF Propagation Objects and Methods

7-208

lat — Latitude of data points
M-by-1 vector

Latitude of data points, returned as an M-by-1 vector with each element unit in degrees.

lon — Longitude of data points
M-by-1 vector

Longitude of data points, returned as an M-by-1 matrix with each element unit in degrees. The output
is wrapped so that the values are in the range [-180 180].

See Also
interp | location

Introduced in R2020a

 getDataVariable

7-209

interp
Geographic data interpolation

Syntax
interpvalue = interp(pd,lat,lon)
interpvalue = interp(pd,Name,Value)

Description
interpvalue = interp(pd,lat,lon) returns interpolated values from the propagation data for
each query point specified in latitude and longitude vectors. The interpolation is performed using a
scattered data interpolation method. Values corresponding to query points outside the data region
are assigned a NaN.

interpvalue = interp(pd,Name,Value) returns interpolated values with additional options
specified by name-value pair arguments.

Examples

Transmitter Site Service Areas

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create array of transmitter sites.

txs = txsite("Name", names,...
 "Latitude",lats,...
 "Longitude",lons, ...
 "TransmitterFrequency",2.5e9);

Compute received power data for each transmitter site.

maxr = 20000;
pd1 = coverage(txs(1),"MaxRange",maxr);
pd2 = coverage(txs(2),"MaxRange",maxr);
pd3 = coverage(txs(3),"MaxRange",maxr);

Compute rectangle containing locations of all data.

locs = [location(pd1); location(pd2); location(pd3)];
[minlatlon, maxlatlon] = bounds(locs);

Create grid of locations over rectangle.

gridlength = 300;
latv = linspace(minlatlon(1),maxlatlon(1),gridlength);

7 RF Propagation Objects and Methods

7-210

lonv = linspace(minlatlon(2),maxlatlon(2),gridlength);
[lons,lats] = meshgrid(lonv,latv);
lats = lats(:);
lons = lons(:);

Get data for each transmitter at grid locations using interpolation.

v1 = interp(pd1,lats,lons);
v2 = interp(pd2,lats,lons);
v3 = interp(pd3,lats,lons);

Create propagation data containing minimum received power values.

minReceivedPower = min([v1 v2 v3],[],2,"includenan");
pd = propagationData(lats,lons,"MinReceivedPower",minReceivedPower);

Plot minimum received power, which shows the weakest signal received from any transmitter site.
The area shown may correspond to the service area of triangulation using the three transmitter sites.

sensitivity = -110;
contour(pd,"Levels",sensitivity:-5,"Type","power")

 interp

7-211

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

lat — Latitude coordinate values
vector

Latitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid. model WGS-84. The latitude coordinates must be in the range [-90 90].

lon — Longitude coordinate values
vector

Longitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid. model WGS-84.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Method','linear'

DataVariableName — Data variable to interpolate
character vector | string scalar

Data variable to interpolate, specified as the comma-separated pair consisting of
'DataVariableName' and a character vector or string scalar corresponding to a variable name in
the data table used to create the propagationData container object. The default value is the
DataVariableName property in the propagationData.
Data Types: char | string

Method — Method used to interpolate data
'natural' (default) | 'nearest' | 'linear'

Method used to interpolate data, specified as the comma separated-pair consisting 'Method' and
one of the following:

• 'natural' - Natural neighbor interpolation
• 'linear' - Linear interpolation
• 'nearest' - Nearest neighbor interpolation

Data Types: char | string

Output Arguments
interpvalue — Interpolated values from propagation data
numeric vector

7 RF Propagation Objects and Methods

7-212

Interpolated values from the propagation data for each query point specified in latitude and longitude
vectors, returned as a numeric vector.

See Also
contour | getDataVariable | location | plot

Introduced in R2020a

 interp

7-213

contour
Display contour map

Syntax
contour(pd)
contour(___ ,Name,Value)

Description
contour(pd) creates a filled contour plot on a map. Contours are colored according to data values
of corresponding locations.

contour(___ ,Name,Value) creates a filled contour map with additional options specified by
name-value pair arguments.

Examples

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
 "Latitude",lats,...
 "Longitude",lons, ...
 "TransmitterFrequency",2.5e9);
show(txs)

7 RF Propagation Objects and Methods

7-214

Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)

 contour

7-215

Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR");

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);

7 RF Propagation Objects and Methods

7-216

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type','power'

DataVariableName — Data variable to contour map
DataVariableName (default) | character vector | string scalar

Data variable to contour map, specified as the comma-separated pair consisting of
'DataVariableName' and a character vector or a string scalar corresponding to a variable name in
the data table used to create the propagation data container object pd.

 contour

7-217

Data Types: char | string

Type — Type of value to plot
'custom' (default) | 'power' | 'efield' | 'sinr' | 'pathloss'

Type of value to plot, specified as the comma-separated pair consisting of 'Type' and one of the
values in the 'Type' column:

Type ColorLimits LegendTitle
'custom' [min(Data) max(Data)] ''
'power' [-120 -5] 'Power (dBm)'
'efield' [20 135] 'E-field (dBuV/m)'
'sinr' [-5 20] 'SINR (dB)'
'pathloss' [45 160] 'Path loss (dB)'

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: char | string

Levels — Data value levels to plot
numeric vector

Data value levels to plot, specified as the comma-separated pair consisting of 'Levels' and numeric
vector. Each level is displayed as a different colored, filled contour on the map. The colors are
selected using Colors if specified, or else Colormap and ColorLimits. Data points with values
below the minimum level are not included in the plot.

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: double

Colors — Colors of data points
M-by-3 array of RGB | array of strings | cell array of character vectors

Colors of the filled contours, specified as the comma-separated pair consisting of 'Colors' and an
M-by-3 array of RGB (red, blue, green) or an array of strings, or a cell array of character vectors.
Colors are assigned element-wise to values in Levels for coloring the corresponding points. Colors
cannot be used with Colormap and ColorLimits.
Data Types: double | char | string

Colormap — Color map for coloring points
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for the coloring points, specified as the comma-separated pair consisting of 'Colormap'
and a predefined colormap name or an M-by-3 array of RGB (red, blue, green) triplets that define M
individual colors. Colormap cannot be used with Colors.
Data Types: double | char | string

ColorLimits — Color limits for color map
two-element vector

7 RF Propagation Objects and Methods

7-218

Color limits for the colormap, specified as the comma-separated pair consisting of 'ColorLimits'
and a two-element vector of the form [min max]. The color limits indicate the data level values that
map to the first and last colors in the colormap. ColorLimits cannot be used with Colors.
Data Types: double

Transparency — Transparency of contour map
0.4 (default) | numeric scalar in the range of [0,1]

Transparency of the contour plot, specified as a numeric scalar in the range [0,1], where 0 is
completely transparent and 1 is completely opaque.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

LegendTitle — Title of color legend
character vector | string scalar

Title of color legend, specified as the comma-separated pair consisting of 'LegendTitle' and a
character vector or a string scalar.
Data Types: string | char

Map — Map for surface data
siteviewer object

Map for surface data, specified as the comma-separated pair consisting of 'Map' and a siteviewer
object.8 The default value is the current Site Viewer or a new Site Viewer, if none is open.
Data Types: char | string

See Also
getDataVariable | interp | plot

Introduced in R2020a

8. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

 contour

7-219

add
Add propagation models

Syntax
pmc = add(propmodel1,propmodel2)

Description
pmc = add(propmodel1,propmodel2) adds propagation model objects propmodel1 and
propmodel2 and returns a composite propagation model object pmc which contains propmodel1
and propmodel2.

Note

• The syntax propmodel1+propmodel2 can be used in place of add.
• A composite propagation model cannot contain more than one propagation model object of the

same class.
• A composite propagation model cannot contain more than one propagation model object which

includes effects of free-space loss.

Examples

Signal Strength Over Terrain Using Composite Propagation Model

Specify the transmitter and the receiver sites.

tx = txsite("Name","Fenway Park", ...
 "Latitude",42.3467, ...
 "Longitude",-71.0972, ...
 "TransmitterFrequency",6e9);
rx = rxsite("Name","Bunker Hill Monument", ...
 "Latitude",42.3763, ...
 "Longitude",-71.0611);

Calculate signal strength using default Longley-Rice model.

 ss1 = sigstrength(rx,tx)

ss1 = -80.9353

Create composite propagation model with Longley-Rice and specific atmospheric propagation models.

pm = propagationModel("longley-rice") + ...
 propagationModel("gas") + propagationModel("rain");

Calculate signal strength using composite propagation model.

7 RF Propagation Objects and Methods

7-220

ss2 = sigstrength(rx,tx,pm)

ss2 = -81.2259

Input Arguments
propmodel1 — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the
propagationModel function to define this input.
Data Types: char | string

propmodel2 — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the
propagationModel function to define this input.
Data Types: char | string

Output Arguments
pmc — Composite propagation model
composite propagationModel function object

Composite propagation model, composite propagationModel function object

The path loss computed by pmc is the sum of path losses computed by propmodel1 and
propmodel2. If either propmodel1 or propmodel2 is a multipath propagation model, then pmc is
also a multipath propagation model where path losses from rain, gas, or fog models in the composite
are added to the path loss computed for each propagation path.

See Also
propagationModel | range

Introduced in R2020a

 add

7-221

comm.Ray
Propagation ray container object

Description
The comm.Ray object is a container object for the properties of a propagation ray. The object contains
the geometric and electromagnetic information of a radio wave propagating from one point to
another point in the space.

Creation
Typically you create comm.Ray objects by using the raytrace function.

Syntax
ray = comm.Ray
ray = comm.Ray(Name,Value)

Description

ray = comm.Ray creates a container object that initializes properties for a propagation ray.

ray = comm.Ray(Name,Value) sets properties using one or more name-value pair arguments.
Enclose each property name in quotes. For example,
comm.Ray('CoordinateSystem','Geographic','TransmitterLocation',
[40.730610,-73.935242,0]) specifies the geographic coordinate system and a transmitter
located in New York City.

Properties
PathSpecification — Propagation path specification method
'Locations' (default) | 'Delay and angles'

Propagation path specification method, specified as one of these values.

• 'Locations' — The ray object path between waypoints are conveyed as (x, y, z) coordinate
points by the TransmitterLocation, ReceiverLocation, and, if applicable,
ReflectorLocations properties .

• 'Delay and angles' — The ray object path between waypoints are conveyed by the
PropagationDelay, AngleOfDeparture, and AngleOfArrival properties.

Data Types: char | string

CoordinateSystem — Coordinate system
'Cartesian' (default) | 'Geographic'

Coordinate system, specified as 'Cartesian' or 'Geographic'. When you set the
CoordinateSystem property to 'Geographic', the coordinate system is defined relative to the

7 RF Propagation Objects and Methods

7-222

WGS-84 Earth ellipsoid model and the object defines angles relative to the local East-North-Up (ENU)
coordinate system at the transmitter and receiver.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: char | string

SystemScale — Cartesian coordinate system scale
1 (default) | positive scalar

Cartesian coordinate system scale in meters, specified as a positive scalar.

Dependencies

To enable this property, set the PathSpecification property to 'Locations' and the
CoordinateSystem property to 'Cartesian'.
Data Types: double

TransmitterLocation — Transmitter location
[0;0;0] (default) | three-element numeric column vector

Transmitter location, specified as a three-element numeric column vector of coordinates in one of
these forms.

• [x; y; z] — This form applies when you set the CoordinateSystem property to 'Cartesian'.
The object does not perform range validation for x, y, and z.

• [latitude; longitude; height] — This form applies when you set the CoordinateSystem property
to 'Geographic'. latitude must be in the range [–90, 90], and height must be nonnegative. The
object does not perform range validation for longitude.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double

ReceiverLocation — Receiver location
[10;10;10] (default) | three-element numeric column vector

Receiver location, specified as a three-element numeric column vector of coordinates in one of these
forms.

• [x; y; z] — This form applies when you set the CoordinateSystem property to 'Cartesian'.
The object does not perform range validation for x, y, and z.

• [latitude; longitude; height] — This form applies when you set the CoordinateSystem property
to 'Geographic'. latitude must be in the range [–90, 90], and height must be nonnegative. The
object does not perform range validation for longitude.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double

 comm.Ray

7-223

LineOfSight — Line of sight
true or 1 (default) | false or 0

Line of sight, specified as a logical value of 1 (true) or 0 (false) to indicate whether the ray is a
line-of-sight ray.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: logical

ReflectorLocations — Reflector locations
[10;10;0] (default) | 3-by-N numeric matrix

Reflector locations, specified as a 3-by-N numeric matrix containing the coordinates of the reflection
points for the ray. N is the number of reflection points for the ray and is set by the NumReflections
property. Each column represents the coordinate location of one reflection point along the
propagation path from transmitter to receiver. The order of the columns is the same as the order of
the points along the path. Columns (reflection point coordinates) are of one of these forms.

• [x; y; z] — when the CoordinateSystem property is set to 'Cartesian'. The object does not
perform range validation for x, y, and z.

• [latitude; longitude; height] — when the CoordinateSystem property is set to 'Geographic'.
latitude must be in the range [–90, 90], and height must be nonnegative. The object does not
perform range validation for longitude.

Dependencies

To enable this property, set the PathSpecification property to 'Locations' and the
LineOfSight property to 0 (false).

.
Data Types: double

PropagationDelay — Propagation delay
5.7775e-08 | nonnegative scalar

Propagation delay in seconds, specified as a nonnegative scalar. The default value is computed using
the default values of the TransmitterLocation and ReceiverLocation properties for a line-of-
sight ray.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
ReflectionLocations.

• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

Data Types: double

PropagationDistance — Propagation distance
17.3205 | nonnegative scalar

This property is read-only.

7 RF Propagation Objects and Methods

7-224

Propagation distance in meters, specified as a nonnegative scalar. The default value is computed
using the default values of the TransmitterLocation and ReceiverLocation properties for a
line-of-sight ray.

• When you set the PathSpecification property to 'Locations', the value is derived from
TransmitterLocation, ReceiverLocation and, if applicable, the ReflectionLocations.

• When you set the PathSpecification property to 'Delay and angles', the value is derived
from PropagationDelay.

Data Types: double

AngleOfDeparture — Angle of departure
[45; 35.2644] | numeric vector of the form [az; el]

Angle of departure in degrees of the ray at the transmitter, specified as a numeric vector of the form
[az; el]. The azimuth angle, az, is measured from the positive x-axis counterclockwise and must be in
the range (–180, 180]. The elevation angle, el, is measured from the x-y plane and must be in the
range [–90, 90]. The default value is computed using the default values of the
TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
ReflectionLocations.

• When CoordinateSystem is set to 'Geographic', the angles are defined with reference to the
local East-North-Up (ENU) coordinate system at transmitter.

Data Types: double

AngleOfArrival — Angle of arrival
[-135; -35.2644] | numeric vector of the form [az; el]

Angle of arrival in degrees of the ray at the receiver, specified as a numeric vector of the form [az; el].
The azimuth angle, az, is measured from the positive x-axis counterclockwise and must be in the
range (–180, 180]. The elevation angle, el, is measured from the x-y plane and must be in the range [–
90, 90]. The default value is computed using the default values of the TransmitterLocation and
ReceiverLocation properties for a line-of-sight ray.

• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
ReflectionLocations.

• When CoordinateSystem is set to 'Geographic', the angles are defined with reference to the
local East-North-Up (ENU) coordinate system at receiver.

Data Types: double

NumReflections — Number of reflection points
0 (default) | nonnegative integer

This property is read-only.

 comm.Ray

7-225

Number of reflection points for the ray object from the transmitter to the receiver, specified as a
nonnegative integer. The value is derived from LineOfSight and, if applicable, the
ReflectionLocations.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double

Frequency — Signal frequency
1.9e+09 (default) | positive scalar

Signal frequency in Hz, specified as a positive scalar.
Data Types: double

PathLossSource — Path loss source
'Free space model' (default) | 'Custom'

Path loss source, specified as 'Free space model' or 'Custom'.
Data Types: char | string

PathLoss — Path loss
62.7941 | nonnegative scalar

Path loss in dB, specified as a nonnegative scalar. The default value is computed using the default
values of the TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathLossSource property to 'Free space model', the PathLoss property
is read-only and derived from the PropagationDistance and Frequency properties by using
the free space propagation model.

• When you set the PathLossSource property to 'Custom', you can set the PathLoss property,
independent of the geometric properties.

Data Types: double

PhaseShift — Phase shift
4.8537 | numeric scalar

Phase shift in radians, specified as a numeric scalar. The default value is computed using the default
values of the TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathLossSource property to 'Free space model', the PhaseShift
property is read-only and derived from the PropagationDistance and Frequency properties by
using the free space propagation model.

• When you set the PathLossSource property to 'Custom', you can set the PhaseShift
property, independent of the geometric properties.

Data Types: double

Object Functions
plot (rays) Plot rays in Site Viewer map

7 RF Propagation Objects and Methods

7-226

Examples

Perform Ray Tracing Between Two Sites in Hong Kong

Perform ray tracing between two sites in Hong Kong, generating a cell array containing comm.Ray
objects. The comm.Ray objects contain the geometric and electromagnetic information for the radio
wave propagation paths from the transmitter site to the receiver site.

Create a Site Viewer map, loading building data for Hong Kong. For more information about the osm
file, see [1] on page 7-0 .

viewer = siteviewer('Buildings','hongkong.osm');

Specify transmitter and receiver sites.

tx = txsite('Latitude',22.2789,'Longitude',114.1625, ...
 'AntennaHeight',10,'TransmitterPower',5, ...
 'TransmitterFrequency',28e9);
rx = rxsite('Latitude',22.2799,'Longitude',114.1617, ...
 'AntennaHeight',1);

Perform ray tracing between the sites, generating comm.Ray objects in a cell array. For the specified
transmitter and receiver sites, performing ray tracing results in a 1-by-1 cell array containing three
ray objects in a row vector.

rays = raytrace(tx,rx,'Type','pathloss','ColorLimits',[100 250])

rays = 1×1 cell array
 {1×3 comm.Ray}

Display the properties of the first comm.Ray object. The LineOfSight property value is 1, and the
NumReflections property value is 0. This combination indicates that the ray defines a line-of-sight
path.

rays{1}(1)

ans =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 1
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 104.2656
 PhaseShift: 4.6390

 Read-only properties:
 PropagationDelay: 4.6442e-07
 PropagationDistance: 139.2294
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 0

 comm.Ray

7-227

Display the properties of the second and third comm.Ray objects. The LineOfSight property values
are 0, and the NumReflections property values are greater than 0. This combination indicates that
the rays define reflected paths.

rays{1}(2)

ans =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×1 double]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 106.2545
 PhaseShift: 0.3951

 Read-only properties:
 PropagationDelay: 4.6490e-07
 PropagationDistance: 139.3720
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 1

rays{1}(3)

ans =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×1 double]
 Frequency: 2.8000e+10
 PathLossSource: 'Custom'
 PathLoss: 120.0733
 PhaseShift: 0.3965

 Read-only properties:
 PropagationDelay: 1.1327e-06
 PropagationDistance: 339.5692
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 1

Visualize ray tracing results.

plot(rays{1});

Appendix

7 RF Propagation Objects and Methods

7-228

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Plot Propagation Rays Between Sites in Chicago

Return ray tracing results in comm.Ray objects and plot the ray propagation path after relaunching
the Site Viewer map.

Create a Site Viewer map, loading building data for Chicago. For more information about the osm file,
see [1] on page 7-0 .

viewer = siteviewer('Buildings','chicago.osm');

Create and show a transmitter site on one building and a receiver site on another building.

tx = txsite('Latitude',41.8800,'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);
show(tx);
rx = rxsite('Latitude',41.881352,'Longitude',-87.629771, ...
 'AntennaHeight',30);
show(rx);

Perform ray tracing, returning the ray object results. For the configuration defined, ray tracing
returns a cell array containing one ray object. Display the ray object properties. Then, close the Site
Viewer map.

rays = raytrace(tx,rx)

rays = 1×1 cell array
 {1×1 comm.Ray}

rays{1}

ans =
 Ray with properties:

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×1 double]
 Frequency: 2.5000e+09
 PathLossSource: 'Custom'
 PathLoss: 94.0915
 PhaseShift: 1.2939

 Read-only properties:
 PropagationDelay: 5.7088e-07
 PropagationDistance: 171.1462
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 1

 comm.Ray

7-229

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

close(viewer);

You can plot the rays without performing ray tracing again. Create another Site Viewer map with the
same buildings. Show the transmitter and receiver sites. Using the previously returned cell array of
ray objects, plot the reflected rays between the transmitter site and the receiver site. The plot
function can plot the path for one ray object at a time.

siteviewer('Buildings','chicago.osm');
show(tx);
show(rx);
plot(rays{1},'Type','power', ...
 'TransmitterSite',tx,'ReceiverSite',rx);

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
buildingMaterialPermittivity | earthSurfacePermittivity | propagationModel | raypl
| raytrace

Objects
siteviewer

Introduced in R2020a

7 RF Propagation Objects and Methods

7-230

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

plot (rays), plot
Package: comm

Plot rays in Site Viewer map

Syntax
plot(rays)
plot(rays,Name,Value)

Description
plot(rays) plots the propagation paths for ray objects in the Site Viewer map.

plot(rays,Name,Value) plots the propagation paths for ray objects in the Site Viewer map with
additional options specified by one or more name-value pair arguments.

Examples

Plot Propagation Rays Between Sites in Chicago

Return ray tracing results in comm.Ray objects and plot the ray propagation path after relaunching
the Site Viewer map.

Create a Site Viewer map, loading building data for Chicago. For more information about the osm file,
see [1] on page 7-0 .

viewer = siteviewer('Buildings','chicago.osm');

Create and show a transmitter site on one building and a receiver site on another building.

tx = txsite('Latitude',41.8800,'Longitude',-87.6295, ...
 'TransmitterFrequency',2.5e9);
show(tx);
rx = rxsite('Latitude',41.881352,'Longitude',-87.629771, ...
 'AntennaHeight',30);
show(rx);

Perform ray tracing, returning the ray object results. For the configuration defined, ray tracing
returns a cell array containing one ray object. Display the ray object properties. Then, close the Site
Viewer map.

rays = raytrace(tx,rx)

rays = 1×1 cell array
 {1×1 comm.Ray}

rays{1}

ans =
 Ray with properties:

 plot (rays), plot

7-231

 PathSpecification: 'Locations'
 CoordinateSystem: 'Geographic'
 TransmitterLocation: [3×1 double]
 ReceiverLocation: [3×1 double]
 LineOfSight: 0
 ReflectionLocations: [3×1 double]
 Frequency: 2.5000e+09
 PathLossSource: 'Custom'
 PathLoss: 94.0915
 PhaseShift: 1.2939

 Read-only properties:
 PropagationDelay: 5.7088e-07
 PropagationDistance: 171.1462
 AngleOfDeparture: [2×1 double]
 AngleOfArrival: [2×1 double]
 NumReflections: 1

close(viewer);

You can plot the rays without performing ray tracing again. Create another Site Viewer map with the
same buildings. Show the transmitter and receiver sites. Using the previously returned cell array of
ray objects, plot the reflected rays between the transmitter site and the receiver site. The plot
function can plot the path for one ray object at a time.

siteviewer('Buildings','chicago.osm');
show(tx);
show(rx);
plot(rays{1},'Type','power', ...
 'TransmitterSite',tx,'ReceiverSite',rx);

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rays — Ray configuration object
comm.Ray object

Ray configuration, specified as one comm.Rayobject or a vector of comm.Ray objects. Each object
must have the PathSpecification property set to "Locations" and the CoordinateSystem
property set to "Geographic".
Data Types: comm.Ray

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

7 RF Propagation Objects and Methods

7-232

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Example: plot(rays,"Type","pathloss","ColorLimits",[-100 0]) adds the propagation
path specified in rays to the current Site Viewer and adjusts the default color limits.

Type — Quantity type to plot
"pathloss" (default) | "power"

Quantity type to plot, specified as "pathloss" or "power". Based on the value specified for Type,
the color applied along the path maps to the path loss in dB or the power in dBm of the signal along
the path.
Data Types: char | string

TransmitterSite — Transmitter site
txsite object

Transmitter site, specified as a txsite object.

Dependencies

Applies only when Type is set to "power".
Data Types: char

ReceiverSite — Receiver site
rxsite object

Receiver site, specified as an rxsite object.

Dependencies

Applies only when Type is set to "power".
Data Types: char

ColorLimits — Colormap color limits
[-120 -5] or [45 160] (default) | 1-by-2 numeric vector

Color limits for colormap, specified as a 1-by-2 numeric vector, [min, max], where min represents the
lower saturation limit and max represents the upper saturation limit. The default is [-120 -5] when
Type is set to 'power' and [45 160] when Type is set to 'pathloss'.
Data Types: double

Colormap — Colormap applied to propagation path
'jet' (default) | M-by-3 numeric array

Colormap applied to propagation path, specified as an M-by-3 numeric array of RGB (red,green,blue)
triplets that define M individual colors.
Data Types: double | char | string

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as true or false.
Data Types: logical

 plot (rays), plot

7-233

Map — Map for visualization and surface data
siteviewer object

Map for visualization and surface data, specified as a siteviewer object.9 The default is the current
siteviewer object, or if no Site Viewer is open a new siteviewer object opens.
Data Types: siteviewer object

See Also
Functions
raytrace

Objects
comm.Ray | siteviewer

Introduced in R2020a

9. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

7 RF Propagation Objects and Methods

7-234

	Classes
	polarpattern

	Objects
	biquad
	bowtieRounded
	bowtieTriangular
	cavity
	dipole
	dipoleFolded
	dipoleVee
	dipoleMeander
	dipoleBlade
	dipoleCycloid
	dipoleHelix
	helix
	horn
	invertedF
	invertedL
	invertedFcoplanar
	invertedLcoplanar
	loopCircular
	loopRectangular
	monopole
	monopoleTopHat
	patchMicrostrip
	planeWaveExcitation
	pifa
	reflector
	slot
	spiralArchimedean
	spiralEquiangular
	vivaldi
	waveguide
	yagiUda
	customAntennaGeometry
	customAntennaMesh
	pcbStack
	cavityCircular
	cloverleaf
	patchMicrostripCircular
	patchMicrostripInsetfed
	reflectorCircular
	birdcage
	sectorInvertedAmos
	antenna.Circle
	antenna.Polygon
	antenna.Rectangle
	PCBWriter
	PCBServices
	PCBConnectors
	dipoleJ
	patchMicrostripEnotch
	patchMicrostripTriangular
	reflectorCorner
	lpda
	helixMultifilar
	dipoleHelixMultifilar
	fractalGasket
	fractalKoch
	reflectorParabolic
	fractalCarpet
	fractalIsland
	dipoleCrossed
	patchMicrostripHnotch
	installedAntenna
	platform
	discone
	bicone
	waveguideCircular
	waveguideSlotted
	hornConical
	gregorian
	cassegrain
	quadCustom
	antenna.Ellipse
	hornConicalCorrugated
	customAntennaStl
	monocone
	patchMicrostripElliptical
	spiralRectangular
	fractalSnowflake
	vivaldiAntipodal
	waveguideRidge
	wireStack
	reflectorGrid
	disconeStrip
	monopoleRadial
	hornRidge
	reflectorCylindrical
	reflectorSpherical
	biconeStrip
	hornCorrugated
	monopoleCustom
	rhombic
	PCBReader
	stackUp

	Apps
	Antenna Designer
	Antenna Array Designer

	Array Objects
	infiniteArray
	linearArray
	conformalArray
	rectangularArray
	circularArray
	customArrayMesh
	customArrayGeometry

	Methods
	customArrayMesh.createFeed
	impedance
	sparameters
	rfparam
	rfplot
	show
	returnLoss
	pattern
	patternAzimuth
	patternMultiply
	patternElevation
	current
	charge
	design
	customAntennaMesh.createFeed
	EHfields
	axialRatio
	beamwidth
	mesh
	layout
	lumpedElement
	vswr
	correlation
	cylinder2strip
	helixpitch2spacing
	meshconfig
	infiniteArray.numSummationTerms
	feedCurrent
	fieldsCustom
	patternCustom
	msiread
	msiwrite
	dielectric
	DielectricCatalog
	hornangle2size
	polarpattern.add
	polarpattern.addCursor
	polarpattern.animate
	polarpattern.createLabels
	polarpattern.findLobes
	polarpattern.replace
	polarpattern.showPeaksTable
	polarpattern.showSpan
	arrayFactor
	add
	area
	intersect
	rotate
	subtract
	gerberWrite
	openFolder
	info
	sendTo
	getLowPassLocs
	getHighPassLocs
	rotateX
	rotateY
	rotateZ
	translate
	plot
	scale
	plus
	minus
	and
	add
	replace
	smithplot
	phaseShift
	patternFromSlices
	PatternPlotOptions
	stlwrite
	rcs
	rectspirallength2turns
	customAntennaStl.createFeed
	strip2cylinder
	numGridsToSpacing
	optimize
	numCorrugationsToPitch
	gerberRead
	coneangle2size
	shapes
	removeSlivers
	removeHoles

	Properties
	PolarPattern

	RF Propagation Objects and Methods
	siteviewer
	txsite
	rxsite
	propagationData
	fogpl
	fspl
	gaspl
	rainpl
	addCustomTerrain
	angle
	clearMap
	close
	coverage
	distance
	elevation
	hide
	link
	location
	los
	pathloss
	propagationModel
	range
	removeCustomTerrain
	pattern
	show
	sigstrength
	sinr
	tirempl
	tiremSetup
	raytrace
	addCustomBasemap
	removeCustomBasemap
	buildingMaterialPermittivity
	earthSurfacePermittivity
	raypl
	location
	plot
	getDataVariable
	interp
	contour
	add
	comm.Ray
	plot (rays)

